Metamath Proof Explorer


Theorem 2pthfrgr

Description: Between any two (different) vertices in a friendship graph, tere is a 2-path (simple path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypothesis 2pthfrgr.v V = Vtx G
Assertion 2pthfrgr G FriendGraph a V b V a f p f a SPathsOn G b p f = 2

Proof

Step Hyp Ref Expression
1 2pthfrgr.v V = Vtx G
2 eqid Edg G = Edg G
3 1 2 2pthfrgrrn2 G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b
4 frgrusgr G FriendGraph G USGraph
5 usgruhgr G USGraph G UHGraph
6 4 5 syl G FriendGraph G UHGraph
7 6 adantr G FriendGraph a V G UHGraph
8 7 adantr G FriendGraph a V b V a G UHGraph
9 8 adantr G FriendGraph a V b V a m V G UHGraph
10 simpllr G FriendGraph a V b V a m V a V
11 simpr G FriendGraph a V b V a m V m V
12 eldifi b V a b V
13 12 ad2antlr G FriendGraph a V b V a m V b V
14 10 11 13 3jca G FriendGraph a V b V a m V a V m V b V
15 9 14 jca G FriendGraph a V b V a m V G UHGraph a V m V b V
16 15 adantr G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b G UHGraph a V m V b V
17 simprrl G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b a m
18 eldifsn b V a b V b a
19 necom b a a b
20 19 biimpi b a a b
21 18 20 simplbiim b V a a b
22 21 ad3antlr G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b a b
23 simprrr G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b m b
24 simprl G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b a m Edg G m b Edg G
25 1 2 2pthon3v G UHGraph a V m V b V a m a b m b a m Edg G m b Edg G f p f a SPathsOn G b p f = 2
26 16 17 22 23 24 25 syl131anc G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b f p f a SPathsOn G b p f = 2
27 26 rexlimdva2 G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b f p f a SPathsOn G b p f = 2
28 27 ralimdva G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b b V a f p f a SPathsOn G b p f = 2
29 28 ralimdva G FriendGraph a V b V a m V a m Edg G m b Edg G a m m b a V b V a f p f a SPathsOn G b p f = 2
30 3 29 mpd G FriendGraph a V b V a f p f a SPathsOn G b p f = 2