Metamath Proof Explorer


Theorem 2pthfrgrrn

Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypotheses 2pthfrgrrn.v V = Vtx G
2pthfrgrrn.e E = Edg G
Assertion 2pthfrgrrn G FriendGraph a V c V a b V a b E b c E

Proof

Step Hyp Ref Expression
1 2pthfrgrrn.v V = Vtx G
2 2pthfrgrrn.e E = Edg G
3 1 2 isfrgr G FriendGraph G USGraph a V c V a ∃! b V b a b c E
4 reurex ∃! b V b a b c E b V b a b c E
5 prcom a b = b a
6 5 eleq1i a b E b a E
7 6 anbi1i a b E b c E b a E b c E
8 zfpair2 b a V
9 zfpair2 b c V
10 8 9 prss b a E b c E b a b c E
11 7 10 sylbbr b a b c E a b E b c E
12 11 reximi b V b a b c E b V a b E b c E
13 4 12 syl ∃! b V b a b c E b V a b E b c E
14 13 a1i G USGraph a V c V a ∃! b V b a b c E b V a b E b c E
15 14 ralimdvva G USGraph a V c V a ∃! b V b a b c E a V c V a b V a b E b c E
16 15 imp G USGraph a V c V a ∃! b V b a b c E a V c V a b V a b E b c E
17 3 16 sylbi G FriendGraph a V c V a b V a b E b c E