Metamath Proof Explorer


Theorem 2pthfrgrrn2

Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypotheses 2pthfrgrrn.v V = Vtx G
2pthfrgrrn.e E = Edg G
Assertion 2pthfrgrrn2 G FriendGraph a V c V a b V a b E b c E a b b c

Proof

Step Hyp Ref Expression
1 2pthfrgrrn.v V = Vtx G
2 2pthfrgrrn.e E = Edg G
3 1 2 2pthfrgrrn G FriendGraph a V c V a b V a b E b c E
4 frgrusgr G FriendGraph G USGraph
5 2 usgredgne G USGraph a b E a b
6 5 ex G USGraph a b E a b
7 2 usgredgne G USGraph b c E b c
8 7 ex G USGraph b c E b c
9 6 8 anim12d G USGraph a b E b c E a b b c
10 4 9 syl G FriendGraph a b E b c E a b b c
11 10 ad2antrr G FriendGraph a V c V a b V a b E b c E a b b c
12 11 ancld G FriendGraph a V c V a b V a b E b c E a b E b c E a b b c
13 12 reximdva G FriendGraph a V c V a b V a b E b c E b V a b E b c E a b b c
14 13 ralimdvva G FriendGraph a V c V a b V a b E b c E a V c V a b V a b E b c E a b b c
15 3 14 mpd G FriendGraph a V c V a b V a b E b c E a b b c