Step |
Hyp |
Ref |
Expression |
1 |
|
2pthnloop.i |
|
2 |
|
pthiswlk |
|
3 |
|
wlkv |
|
4 |
2 3
|
syl |
|
5 |
|
ispth |
|
6 |
|
istrl |
|
7 |
|
eqid |
|
8 |
7 1
|
iswlkg |
|
9 |
8
|
anbi1d |
|
10 |
6 9
|
syl5bb |
|
11 |
|
pthdadjvtx |
|
12 |
11
|
ad5ant245 |
|
13 |
12
|
neneqd |
|
14 |
|
ifpfal |
|
15 |
14
|
adantl |
|
16 |
|
fvexd |
|
17 |
|
fvexd |
|
18 |
|
neqne |
|
19 |
|
fvexd |
|
20 |
|
prsshashgt1 |
|
21 |
16 17 18 19 20
|
syl31anc |
|
22 |
21
|
adantl |
|
23 |
15 22
|
sylbid |
|
24 |
13 23
|
mpdan |
|
25 |
24
|
ralimdva |
|
26 |
25
|
ex |
|
27 |
26
|
com23 |
|
28 |
27
|
exp31 |
|
29 |
28
|
com24 |
|
30 |
29
|
3impia |
|
31 |
30
|
exp4c |
|
32 |
31
|
imp |
|
33 |
10 32
|
syl6bi |
|
34 |
33
|
com24 |
|
35 |
34
|
com14 |
|
36 |
35
|
3imp |
|
37 |
36
|
com12 |
|
38 |
5 37
|
syl5bi |
|
39 |
38
|
3ad2ant1 |
|
40 |
4 39
|
mpcom |
|
41 |
40
|
pm2.43i |
|
42 |
41
|
imp |
|