| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2pthnloop.i |  | 
						
							| 2 |  | pthiswlk |  | 
						
							| 3 |  | wlkv |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 |  | ispth |  | 
						
							| 6 |  | istrl |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 1 | iswlkg |  | 
						
							| 9 | 8 | anbi1d |  | 
						
							| 10 | 6 9 | bitrid |  | 
						
							| 11 |  | pthdadjvtx |  | 
						
							| 12 | 11 | ad5ant245 |  | 
						
							| 13 | 12 | neneqd |  | 
						
							| 14 |  | ifpfal |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | fvexd |  | 
						
							| 17 |  | fvexd |  | 
						
							| 18 |  | neqne |  | 
						
							| 19 |  | fvexd |  | 
						
							| 20 |  | prsshashgt1 |  | 
						
							| 21 | 16 17 18 19 20 | syl31anc |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 15 22 | sylbid |  | 
						
							| 24 | 13 23 | mpdan |  | 
						
							| 25 | 24 | ralimdva |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 26 | com23 |  | 
						
							| 28 | 27 | exp31 |  | 
						
							| 29 | 28 | com24 |  | 
						
							| 30 | 29 | 3impia |  | 
						
							| 31 | 30 | exp4c |  | 
						
							| 32 | 31 | imp |  | 
						
							| 33 | 10 32 | biimtrdi |  | 
						
							| 34 | 33 | com24 |  | 
						
							| 35 | 34 | com14 |  | 
						
							| 36 | 35 | 3imp |  | 
						
							| 37 | 36 | com12 |  | 
						
							| 38 | 5 37 | biimtrid |  | 
						
							| 39 | 38 | 3ad2ant1 |  | 
						
							| 40 | 4 39 | mpcom |  | 
						
							| 41 | 40 | pm2.43i |  | 
						
							| 42 | 41 | imp |  |