Metamath Proof Explorer


Theorem 2pwne

Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008)

Ref Expression
Assertion 2pwne A V 𝒫 𝒫 A A

Proof

Step Hyp Ref Expression
1 sdomirr ¬ 𝒫 𝒫 A 𝒫 𝒫 A
2 canth2g A V A 𝒫 A
3 pwexg A V 𝒫 A V
4 canth2g 𝒫 A V 𝒫 A 𝒫 𝒫 A
5 3 4 syl A V 𝒫 A 𝒫 𝒫 A
6 sdomtr A 𝒫 A 𝒫 A 𝒫 𝒫 A A 𝒫 𝒫 A
7 2 5 6 syl2anc A V A 𝒫 𝒫 A
8 breq1 𝒫 𝒫 A = A 𝒫 𝒫 A 𝒫 𝒫 A A 𝒫 𝒫 A
9 7 8 syl5ibrcom A V 𝒫 𝒫 A = A 𝒫 𝒫 A 𝒫 𝒫 A
10 1 9 mtoi A V ¬ 𝒫 𝒫 A = A
11 10 neqned A V 𝒫 𝒫 A A