Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
2pwne
Next ⟩
disjen
Metamath Proof Explorer
Ascii
Unicode
Theorem
2pwne
Description:
No set equals the power set of its power set.
(Contributed by
NM
, 17-Nov-2008)
Ref
Expression
Assertion
2pwne
⊢
A
∈
V
→
𝒫
𝒫
A
≠
A
Proof
Step
Hyp
Ref
Expression
1
sdomirr
⊢
¬
𝒫
𝒫
A
≺
𝒫
𝒫
A
2
canth2g
⊢
A
∈
V
→
A
≺
𝒫
A
3
pwexg
⊢
A
∈
V
→
𝒫
A
∈
V
4
canth2g
⊢
𝒫
A
∈
V
→
𝒫
A
≺
𝒫
𝒫
A
5
3
4
syl
⊢
A
∈
V
→
𝒫
A
≺
𝒫
𝒫
A
6
sdomtr
⊢
A
≺
𝒫
A
∧
𝒫
A
≺
𝒫
𝒫
A
→
A
≺
𝒫
𝒫
A
7
2
5
6
syl2anc
⊢
A
∈
V
→
A
≺
𝒫
𝒫
A
8
breq1
⊢
𝒫
𝒫
A
=
A
→
𝒫
𝒫
A
≺
𝒫
𝒫
A
↔
A
≺
𝒫
𝒫
A
9
7
8
syl5ibrcom
⊢
A
∈
V
→
𝒫
𝒫
A
=
A
→
𝒫
𝒫
A
≺
𝒫
𝒫
A
10
1
9
mtoi
⊢
A
∈
V
→
¬
𝒫
𝒫
A
=
A
11
10
neqned
⊢
A
∈
V
→
𝒫
𝒫
A
≠
A