Metamath Proof Explorer


Theorem 2pwuninel

Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008)

Ref Expression
Assertion 2pwuninel ¬ 𝒫 𝒫 A A

Proof

Step Hyp Ref Expression
1 sdomirr ¬ 𝒫 𝒫 A 𝒫 𝒫 A
2 elssuni 𝒫 𝒫 A A 𝒫 𝒫 A A
3 ssdomg A V 𝒫 𝒫 A A 𝒫 𝒫 A A
4 canth2g A V A 𝒫 A
5 pwexb A V 𝒫 A V
6 canth2g 𝒫 A V 𝒫 A 𝒫 𝒫 A
7 5 6 sylbi A V 𝒫 A 𝒫 𝒫 A
8 sdomtr A 𝒫 A 𝒫 A 𝒫 𝒫 A A 𝒫 𝒫 A
9 4 7 8 syl2anc A V A 𝒫 𝒫 A
10 domsdomtr 𝒫 𝒫 A A A 𝒫 𝒫 A 𝒫 𝒫 A 𝒫 𝒫 A
11 10 ex 𝒫 𝒫 A A A 𝒫 𝒫 A 𝒫 𝒫 A 𝒫 𝒫 A
12 3 9 11 syl6ci A V 𝒫 𝒫 A A 𝒫 𝒫 A 𝒫 𝒫 A
13 2 12 syl5 A V 𝒫 𝒫 A A 𝒫 𝒫 A 𝒫 𝒫 A
14 1 13 mtoi A V ¬ 𝒫 𝒫 A A
15 elex 𝒫 𝒫 A A 𝒫 𝒫 A V
16 pwexb 𝒫 A V 𝒫 𝒫 A V
17 5 16 bitri A V 𝒫 𝒫 A V
18 15 17 sylibr 𝒫 𝒫 A A A V
19 18 con3i ¬ A V ¬ 𝒫 𝒫 A A
20 14 19 pm2.61i ¬ 𝒫 𝒫 A A