Metamath Proof Explorer


Theorem 2ralbidva

Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Hypothesis 2ralbidva.1 φ x A y B ψ χ
Assertion 2ralbidva φ x A y B ψ x A y B χ

Proof

Step Hyp Ref Expression
1 2ralbidva.1 φ x A y B ψ χ
2 1 anassrs φ x A y B ψ χ
3 2 ralbidva φ x A y B ψ y B χ
4 3 ralbidva φ x A y B ψ x A y B χ