Metamath Proof Explorer
Description: Inference adding two restricted universal quantifiers to both sides of
an equivalence. (Contributed by NM, 1-Aug-2004)
|
|
Ref |
Expression |
|
Hypothesis |
2ralbii.1 |
|
|
Assertion |
2ralbii |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ralbii.1 |
|
| 2 |
1
|
ralbii |
|
| 3 |
2
|
ralbii |
|