Metamath Proof Explorer


Theorem 2ralsng

Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses ralsng.1 x = A φ ψ
2ralsng.1 y = B ψ χ
Assertion 2ralsng A V B W x A y B φ χ

Proof

Step Hyp Ref Expression
1 ralsng.1 x = A φ ψ
2 2ralsng.1 y = B ψ χ
3 1 ralbidv x = A y B φ y B ψ
4 3 ralsng A V x A y B φ y B ψ
5 2 ralsng B W y B ψ χ
6 4 5 sylan9bb A V B W x A y B φ χ