Metamath Proof Explorer


Theorem 2reu5a

Description: Double restricted existential uniqueness in terms of restricted existence and restricted "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion 2reu5a ∃!xA∃!yBφxAyBφ*yBφ*xAyBφ*yBφ

Proof

Step Hyp Ref Expression
1 reu5 ∃!xA∃!yBφxA∃!yBφ*xA∃!yBφ
2 reu5 ∃!yBφyBφ*yBφ
3 2 rexbii xA∃!yBφxAyBφ*yBφ
4 2 rmobii *xA∃!yBφ*xAyBφ*yBφ
5 3 4 anbi12i xA∃!yBφ*xA∃!yBφxAyBφ*yBφ*xAyBφ*yBφ
6 1 5 bitri ∃!xA∃!yBφxAyBφ*yBφ*xAyBφ*yBφ