Metamath Proof Explorer


Theorem 2reurmo

Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one", analogous to 2eumo . (Contributed by Alexander van der Vekens, 24-Jun-2017)

Ref Expression
Assertion 2reurmo ∃! x A * y B φ * x A ∃! y B φ

Proof

Step Hyp Ref Expression
1 reuimrmo x A ∃! y B φ * y B φ ∃! x A * y B φ * x A ∃! y B φ
2 reurmo ∃! y B φ * y B φ
3 2 a1i x A ∃! y B φ * y B φ
4 1 3 mprg ∃! x A * y B φ * x A ∃! y B φ