Metamath Proof Explorer


Theorem 2rexbidva

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypothesis 2rexbidva.1 φ x A y B ψ χ
Assertion 2rexbidva φ x A y B ψ x A y B χ

Proof

Step Hyp Ref Expression
1 2rexbidva.1 φ x A y B ψ χ
2 1 anassrs φ x A y B ψ χ
3 2 rexbidva φ x A y B ψ y B χ
4 3 rexbidva φ x A y B ψ x A y B χ