Metamath Proof Explorer


Theorem 2rexbii

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995)

Ref Expression
Hypothesis rexbii.1 φ ψ
Assertion 2rexbii x A y B φ x A y B ψ

Proof

Step Hyp Ref Expression
1 rexbii.1 φ ψ
2 1 rexbii y B φ y B ψ
3 2 rexbii x A y B φ x A y B ψ