Metamath Proof Explorer


Theorem 2rexbiia

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)

Ref Expression
Hypothesis 2rexbiia.1 x A y B φ ψ
Assertion 2rexbiia x A y B φ x A y B ψ

Proof

Step Hyp Ref Expression
1 2rexbiia.1 x A y B φ ψ
2 1 rexbidva x A y B φ y B ψ
3 2 rexbiia x A y B φ x A y B ψ