Metamath Proof Explorer


Theorem 2rexreu

Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu . (Contributed by Alexander van der Vekens, 25-Jun-2017)

Ref Expression
Assertion 2rexreu ∃!xAyBφ∃!yBxAφ∃!xA∃!yBφ

Proof

Step Hyp Ref Expression
1 reurmo ∃!xAyBφ*xAyBφ
2 reurex ∃!yBφyBφ
3 2 rmoimi *xAyBφ*xA∃!yBφ
4 1 3 syl ∃!xAyBφ*xA∃!yBφ
5 2reurex ∃!yBxAφxA∃!yBφ
6 4 5 anim12ci ∃!xAyBφ∃!yBxAφxA∃!yBφ*xA∃!yBφ
7 reu5 ∃!xA∃!yBφxA∃!yBφ*xA∃!yBφ
8 6 7 sylibr ∃!xAyBφ∃!yBxAφ∃!xA∃!yBφ