Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
2sb5
Next ⟩
sbco4lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
2sb5
Description:
Equivalence for double substitution.
(Contributed by
NM
, 3-Feb-2005)
Ref
Expression
Assertion
2sb5
⊢
z
x
w
y
φ
↔
∃
x
∃
y
x
=
z
∧
y
=
w
∧
φ
Proof
Step
Hyp
Ref
Expression
1
sb5
⊢
z
x
w
y
φ
↔
∃
x
x
=
z
∧
w
y
φ
2
19.42v
⊢
∃
y
x
=
z
∧
y
=
w
∧
φ
↔
x
=
z
∧
∃
y
y
=
w
∧
φ
3
anass
⊢
x
=
z
∧
y
=
w
∧
φ
↔
x
=
z
∧
y
=
w
∧
φ
4
3
exbii
⊢
∃
y
x
=
z
∧
y
=
w
∧
φ
↔
∃
y
x
=
z
∧
y
=
w
∧
φ
5
sb5
⊢
w
y
φ
↔
∃
y
y
=
w
∧
φ
6
5
anbi2i
⊢
x
=
z
∧
w
y
φ
↔
x
=
z
∧
∃
y
y
=
w
∧
φ
7
2
4
6
3bitr4ri
⊢
x
=
z
∧
w
y
φ
↔
∃
y
x
=
z
∧
y
=
w
∧
φ
8
7
exbii
⊢
∃
x
x
=
z
∧
w
y
φ
↔
∃
x
∃
y
x
=
z
∧
y
=
w
∧
φ
9
1
8
bitri
⊢
z
x
w
y
φ
↔
∃
x
∃
y
x
=
z
∧
y
=
w
∧
φ