Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Define proper substitution
2sb6
Next ⟩
sb1v
Metamath Proof Explorer
Ascii
Unicode
Theorem
2sb6
Description:
Equivalence for double substitution.
(Contributed by
NM
, 3-Feb-2005)
Ref
Expression
Assertion
2sb6
⊢
z
x
w
y
φ
↔
∀
x
∀
y
x
=
z
∧
y
=
w
→
φ
Proof
Step
Hyp
Ref
Expression
1
sb6
⊢
z
x
w
y
φ
↔
∀
x
x
=
z
→
w
y
φ
2
19.21v
⊢
∀
y
x
=
z
→
y
=
w
→
φ
↔
x
=
z
→
∀
y
y
=
w
→
φ
3
impexp
⊢
x
=
z
∧
y
=
w
→
φ
↔
x
=
z
→
y
=
w
→
φ
4
3
albii
⊢
∀
y
x
=
z
∧
y
=
w
→
φ
↔
∀
y
x
=
z
→
y
=
w
→
φ
5
sb6
⊢
w
y
φ
↔
∀
y
y
=
w
→
φ
6
5
imbi2i
⊢
x
=
z
→
w
y
φ
↔
x
=
z
→
∀
y
y
=
w
→
φ
7
2
4
6
3bitr4ri
⊢
x
=
z
→
w
y
φ
↔
∀
y
x
=
z
∧
y
=
w
→
φ
8
7
albii
⊢
∀
x
x
=
z
→
w
y
φ
↔
∀
x
∀
y
x
=
z
∧
y
=
w
→
φ
9
1
8
bitri
⊢
z
x
w
y
φ
↔
∀
x
∀
y
x
=
z
∧
y
=
w
→
φ