Metamath Proof Explorer


Theorem 2sb8e

Description: An equivalent expression for double existence. Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring more disjoint variables, but fewer axioms, see 2sb8ev . (Contributed by Wolf Lammen, 2-Nov-2019) (New usage is discouraged.)

Ref Expression
Assertion 2sb8e x y φ z w z x w y φ

Proof

Step Hyp Ref Expression
1 nfv w φ
2 1 sb8e y φ w w y φ
3 2 exbii x y φ x w w y φ
4 excom x w w y φ w x w y φ
5 3 4 bitri x y φ w x w y φ
6 nfv z φ
7 6 nfsb z w y φ
8 7 sb8e x w y φ z z x w y φ
9 8 exbii w x w y φ w z z x w y φ
10 excom w z z x w y φ z w z x w y φ
11 5 9 10 3bitri x y φ z w z x w y φ