Metamath Proof Explorer


Theorem 2sbbid

Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023)

Ref Expression
Hypotheses sbbid.1 x φ
sbbid.2 φ ψ χ
2sbbid.1 y φ
Assertion 2sbbid φ t x u y ψ t x u y χ

Proof

Step Hyp Ref Expression
1 sbbid.1 x φ
2 sbbid.2 φ ψ χ
3 2sbbid.1 y φ
4 3 2 sbbid φ u y ψ u y χ
5 1 4 sbbid φ t x u y ψ t x u y χ