Metamath Proof Explorer


Theorem 2sbbii

Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023)

Ref Expression
Hypothesis sbbii.1 φ ψ
Assertion 2sbbii t x u y φ t x u y ψ

Proof

Step Hyp Ref Expression
1 sbbii.1 φ ψ
2 1 sbbii u y φ u y ψ
3 2 sbbii t x u y φ t x u y ψ