Metamath Proof Explorer


Theorem 2sbc5g

Description: Theorem *13.22 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion 2sbc5g A C B D z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ

Proof

Step Hyp Ref Expression
1 eqeq2 y = B w = y w = B
2 1 anbi2d y = B z = x w = y z = x w = B
3 2 anbi1d y = B z = x w = y φ z = x w = B φ
4 3 2exbidv y = B z w z = x w = y φ z w z = x w = B φ
5 dfsbcq y = B [˙y / w]˙ φ [˙B / w]˙ φ
6 5 sbcbidv y = B [˙x / z]˙ [˙y / w]˙ φ [˙x / z]˙ [˙B / w]˙ φ
7 4 6 bibi12d y = B z w z = x w = y φ [˙x / z]˙ [˙y / w]˙ φ z w z = x w = B φ [˙x / z]˙ [˙B / w]˙ φ
8 eqeq2 x = A z = x z = A
9 8 anbi1d x = A z = x w = B z = A w = B
10 9 anbi1d x = A z = x w = B φ z = A w = B φ
11 10 2exbidv x = A z w z = x w = B φ z w z = A w = B φ
12 dfsbcq x = A [˙x / z]˙ [˙B / w]˙ φ [˙A / z]˙ [˙B / w]˙ φ
13 11 12 bibi12d x = A z w z = x w = B φ [˙x / z]˙ [˙B / w]˙ φ z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ
14 sbc5 [˙x / z]˙ [˙y / w]˙ φ z z = x [˙y / w]˙ φ
15 19.42v w z = x w = y φ z = x w w = y φ
16 anass z = x w = y φ z = x w = y φ
17 16 exbii w z = x w = y φ w z = x w = y φ
18 sbc5 [˙y / w]˙ φ w w = y φ
19 18 anbi2i z = x [˙y / w]˙ φ z = x w w = y φ
20 15 17 19 3bitr4ri z = x [˙y / w]˙ φ w z = x w = y φ
21 20 exbii z z = x [˙y / w]˙ φ z w z = x w = y φ
22 14 21 bitr2i z w z = x w = y φ [˙x / z]˙ [˙y / w]˙ φ
23 7 13 22 vtocl2g B D A C z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ
24 23 ancoms A C B D z w z = A w = B φ [˙A / z]˙ [˙B / w]˙ φ