Metamath Proof Explorer


Theorem 2sq

Description: All primes of the form 4 k + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion 2sq P P mod 4 = 1 x y P = x 2 + y 2

Proof

Step Hyp Ref Expression
1 eqid ran w i w 2 = ran w i w 2
2 oveq1 a = x a gcd b = x gcd b
3 2 eqeq1d a = x a gcd b = 1 x gcd b = 1
4 oveq1 a = x a 2 = x 2
5 4 oveq1d a = x a 2 + b 2 = x 2 + b 2
6 5 eqeq2d a = x z = a 2 + b 2 z = x 2 + b 2
7 3 6 anbi12d a = x a gcd b = 1 z = a 2 + b 2 x gcd b = 1 z = x 2 + b 2
8 oveq2 b = y x gcd b = x gcd y
9 8 eqeq1d b = y x gcd b = 1 x gcd y = 1
10 oveq1 b = y b 2 = y 2
11 10 oveq2d b = y x 2 + b 2 = x 2 + y 2
12 11 eqeq2d b = y z = x 2 + b 2 z = x 2 + y 2
13 9 12 anbi12d b = y x gcd b = 1 z = x 2 + b 2 x gcd y = 1 z = x 2 + y 2
14 7 13 cbvrex2vw a b a gcd b = 1 z = a 2 + b 2 x y x gcd y = 1 z = x 2 + y 2
15 14 abbii z | a b a gcd b = 1 z = a 2 + b 2 = z | x y x gcd y = 1 z = x 2 + y 2
16 1 15 2sqlem11 P P mod 4 = 1 P ran w i w 2
17 1 2sqlem2 P ran w i w 2 x y P = x 2 + y 2
18 16 17 sylib P P mod 4 = 1 x y P = x 2 + y 2