| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne |  | 
						
							| 2 |  | prmz |  | 
						
							| 3 | 2 | ad3antrrr |  | 
						
							| 4 |  | simplrr |  | 
						
							| 5 |  | bezout |  | 
						
							| 6 | 3 4 5 | syl2anc |  | 
						
							| 7 |  | simplll |  | 
						
							| 8 |  | simpllr |  | 
						
							| 9 |  | simplr |  | 
						
							| 10 |  | simprll |  | 
						
							| 11 |  | simprlr |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 | 7 8 9 10 11 12 | 2sqblem |  | 
						
							| 14 | 13 | expr |  | 
						
							| 15 | 14 | rexlimdvva |  | 
						
							| 16 | 6 15 | mpd |  | 
						
							| 17 | 16 | ex |  | 
						
							| 18 | 17 | rexlimdvva |  | 
						
							| 19 | 18 | impancom |  | 
						
							| 20 | 1 19 | biimtrrid |  | 
						
							| 21 | 20 | orrd |  | 
						
							| 22 |  | 1z |  | 
						
							| 23 |  | oveq1 |  | 
						
							| 24 |  | sq1 |  | 
						
							| 25 | 23 24 | eqtrdi |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 26 | eqeq2d |  | 
						
							| 28 |  | oveq1 |  | 
						
							| 29 | 28 24 | eqtrdi |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 |  | 1p1e2 |  | 
						
							| 32 | 30 31 | eqtrdi |  | 
						
							| 33 | 32 | eqeq2d |  | 
						
							| 34 | 27 33 | rspc2ev |  | 
						
							| 35 | 22 22 34 | mp3an12 |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 |  | 2sq |  | 
						
							| 38 | 36 37 | jaodan |  | 
						
							| 39 | 21 38 | impbida |  |