Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|
2 |
|
prmz |
|
3 |
2
|
ad3antrrr |
|
4 |
|
simplrr |
|
5 |
|
bezout |
|
6 |
3 4 5
|
syl2anc |
|
7 |
|
simplll |
|
8 |
|
simpllr |
|
9 |
|
simplr |
|
10 |
|
simprll |
|
11 |
|
simprlr |
|
12 |
|
simprr |
|
13 |
7 8 9 10 11 12
|
2sqblem |
|
14 |
13
|
expr |
|
15 |
14
|
rexlimdvva |
|
16 |
6 15
|
mpd |
|
17 |
16
|
ex |
|
18 |
17
|
rexlimdvva |
|
19 |
18
|
impancom |
|
20 |
1 19
|
syl5bir |
|
21 |
20
|
orrd |
|
22 |
|
1z |
|
23 |
|
oveq1 |
|
24 |
|
sq1 |
|
25 |
23 24
|
eqtrdi |
|
26 |
25
|
oveq1d |
|
27 |
26
|
eqeq2d |
|
28 |
|
oveq1 |
|
29 |
28 24
|
eqtrdi |
|
30 |
29
|
oveq2d |
|
31 |
|
1p1e2 |
|
32 |
30 31
|
eqtrdi |
|
33 |
32
|
eqeq2d |
|
34 |
27 33
|
rspc2ev |
|
35 |
22 22 34
|
mp3an12 |
|
36 |
35
|
adantl |
|
37 |
|
2sq |
|
38 |
36 37
|
jaodan |
|
39 |
21 38
|
impbida |
|