Step |
Hyp |
Ref |
Expression |
1 |
|
2sqcoprm.1 |
|
2 |
|
2sqcoprm.2 |
|
3 |
|
2sqcoprm.3 |
|
4 |
|
2sqcoprm.4 |
|
5 |
1 2 3 4
|
2sqn0 |
|
6 |
2 3
|
gcdcld |
|
7 |
6
|
adantr |
|
8 |
2
|
adantr |
|
9 |
3
|
adantr |
|
10 |
|
simpr |
|
11 |
10
|
neneqd |
|
12 |
11
|
intnanrd |
|
13 |
|
gcdn0cl |
|
14 |
8 9 12 13
|
syl21anc |
|
15 |
14
|
nnsqcld |
|
16 |
6
|
nn0zd |
|
17 |
|
sqnprm |
|
18 |
16 17
|
syl |
|
19 |
|
zsqcl |
|
20 |
16 19
|
syl |
|
21 |
|
zsqcl |
|
22 |
2 21
|
syl |
|
23 |
|
zsqcl |
|
24 |
3 23
|
syl |
|
25 |
|
gcddvds |
|
26 |
2 3 25
|
syl2anc |
|
27 |
26
|
simpld |
|
28 |
|
dvdssqim |
|
29 |
28
|
imp |
|
30 |
16 2 27 29
|
syl21anc |
|
31 |
26
|
simprd |
|
32 |
|
dvdssqim |
|
33 |
32
|
imp |
|
34 |
16 3 31 33
|
syl21anc |
|
35 |
20 22 24 30 34
|
dvds2addd |
|
36 |
35 4
|
breqtrd |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
1
|
adantr |
|
40 |
|
dvdsprm |
|
41 |
38 39 40
|
syl2anc |
|
42 |
37 41
|
mpbid |
|
43 |
42 39
|
eqeltrd |
|
44 |
18 43
|
mtand |
|
45 |
|
eluz2b3 |
|
46 |
44 45
|
sylnib |
|
47 |
|
imnan |
|
48 |
46 47
|
sylibr |
|
49 |
48
|
adantr |
|
50 |
15 49
|
mpd |
|
51 |
|
df-ne |
|
52 |
50 51
|
sylnib |
|
53 |
52
|
notnotrd |
|
54 |
|
nn0sqeq1 |
|
55 |
7 53 54
|
syl2anc |
|
56 |
5 55
|
mpdan |
|