| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
|
2sqlem7.2 |
|
| 3 |
|
simpr |
|
| 4 |
|
simpl |
|
| 5 |
|
1ne2 |
|
| 6 |
5
|
necomi |
|
| 7 |
|
oveq1 |
|
| 8 |
|
2re |
|
| 9 |
|
4re |
|
| 10 |
|
4pos |
|
| 11 |
9 10
|
elrpii |
|
| 12 |
|
0le2 |
|
| 13 |
|
2lt4 |
|
| 14 |
|
modid |
|
| 15 |
8 11 12 13 14
|
mp4an |
|
| 16 |
7 15
|
eqtrdi |
|
| 17 |
16
|
neeq1d |
|
| 18 |
6 17
|
mpbiri |
|
| 19 |
18
|
necon2i |
|
| 20 |
3 19
|
syl |
|
| 21 |
|
eldifsn |
|
| 22 |
4 20 21
|
sylanbrc |
|
| 23 |
|
m1lgs |
|
| 24 |
22 23
|
syl |
|
| 25 |
3 24
|
mpbird |
|
| 26 |
|
neg1z |
|
| 27 |
|
lgsqr |
|
| 28 |
26 22 27
|
sylancr |
|
| 29 |
25 28
|
mpbid |
|
| 30 |
29
|
simprd |
|
| 31 |
|
simprl |
|
| 32 |
|
1zzd |
|
| 33 |
|
gcd1 |
|
| 34 |
33
|
ad2antrl |
|
| 35 |
|
eqidd |
|
| 36 |
|
oveq1 |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
|
oveq1 |
|
| 39 |
38
|
oveq1d |
|
| 40 |
39
|
eqeq2d |
|
| 41 |
37 40
|
anbi12d |
|
| 42 |
|
oveq2 |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
|
oveq1 |
|
| 45 |
|
sq1 |
|
| 46 |
44 45
|
eqtrdi |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
43 48
|
anbi12d |
|
| 50 |
41 49
|
rspc2ev |
|
| 51 |
31 32 34 35 50
|
syl112anc |
|
| 52 |
|
ovex |
|
| 53 |
|
eqeq1 |
|
| 54 |
53
|
anbi2d |
|
| 55 |
54
|
2rexbidv |
|
| 56 |
52 55 2
|
elab2 |
|
| 57 |
51 56
|
sylibr |
|
| 58 |
|
prmnn |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
|
simprr |
|
| 61 |
31
|
zcnd |
|
| 62 |
61
|
sqcld |
|
| 63 |
|
ax-1cn |
|
| 64 |
|
subneg |
|
| 65 |
62 63 64
|
sylancl |
|
| 66 |
60 65
|
breqtrd |
|
| 67 |
1 2
|
2sqlem10 |
|
| 68 |
57 59 66 67
|
syl3anc |
|
| 69 |
30 68
|
rexlimddv |
|