| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sq.1 |  | 
						
							| 2 | 1 | 2sqlem1 |  | 
						
							| 3 |  | elgz |  | 
						
							| 4 | 3 | simp2bi |  | 
						
							| 5 | 3 | simp3bi |  | 
						
							| 6 |  | gzcn |  | 
						
							| 7 | 6 | absvalsq2d |  | 
						
							| 8 |  | oveq1 |  | 
						
							| 9 | 8 | oveq1d |  | 
						
							| 10 | 9 | eqeq2d |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 | 12 | eqeq2d |  | 
						
							| 14 | 10 13 | rspc2ev |  | 
						
							| 15 | 4 5 7 14 | syl3anc |  | 
						
							| 16 |  | eqeq1 |  | 
						
							| 17 | 16 | 2rexbidv |  | 
						
							| 18 | 15 17 | syl5ibrcom |  | 
						
							| 19 | 18 | rexlimiv |  | 
						
							| 20 | 2 19 | sylbi |  | 
						
							| 21 |  | gzreim |  | 
						
							| 22 |  | zcn |  | 
						
							| 23 |  | ax-icn |  | 
						
							| 24 |  | zcn |  | 
						
							| 25 |  | mulcl |  | 
						
							| 26 | 23 24 25 | sylancr |  | 
						
							| 27 |  | addcl |  | 
						
							| 28 | 22 26 27 | syl2an |  | 
						
							| 29 | 28 | absvalsq2d |  | 
						
							| 30 |  | zre |  | 
						
							| 31 |  | zre |  | 
						
							| 32 |  | crre |  | 
						
							| 33 | 30 31 32 | syl2an |  | 
						
							| 34 | 33 | oveq1d |  | 
						
							| 35 |  | crim |  | 
						
							| 36 | 30 31 35 | syl2an |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 34 37 | oveq12d |  | 
						
							| 39 | 29 38 | eqtr2d |  | 
						
							| 40 |  | fveq2 |  | 
						
							| 41 | 40 | oveq1d |  | 
						
							| 42 | 41 | rspceeqv |  | 
						
							| 43 | 21 39 42 | syl2anc |  | 
						
							| 44 | 1 | 2sqlem1 |  | 
						
							| 45 | 43 44 | sylibr |  | 
						
							| 46 |  | eleq1 |  | 
						
							| 47 | 45 46 | syl5ibrcom |  | 
						
							| 48 | 47 | rexlimivv |  | 
						
							| 49 | 20 48 | impbii |  |