Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|
2 |
1
|
2sqlem1 |
|
3 |
|
elgz |
|
4 |
3
|
simp2bi |
|
5 |
3
|
simp3bi |
|
6 |
|
gzcn |
|
7 |
6
|
absvalsq2d |
|
8 |
|
oveq1 |
|
9 |
8
|
oveq1d |
|
10 |
9
|
eqeq2d |
|
11 |
|
oveq1 |
|
12 |
11
|
oveq2d |
|
13 |
12
|
eqeq2d |
|
14 |
10 13
|
rspc2ev |
|
15 |
4 5 7 14
|
syl3anc |
|
16 |
|
eqeq1 |
|
17 |
16
|
2rexbidv |
|
18 |
15 17
|
syl5ibrcom |
|
19 |
18
|
rexlimiv |
|
20 |
2 19
|
sylbi |
|
21 |
|
gzreim |
|
22 |
|
zcn |
|
23 |
|
ax-icn |
|
24 |
|
zcn |
|
25 |
|
mulcl |
|
26 |
23 24 25
|
sylancr |
|
27 |
|
addcl |
|
28 |
22 26 27
|
syl2an |
|
29 |
28
|
absvalsq2d |
|
30 |
|
zre |
|
31 |
|
zre |
|
32 |
|
crre |
|
33 |
30 31 32
|
syl2an |
|
34 |
33
|
oveq1d |
|
35 |
|
crim |
|
36 |
30 31 35
|
syl2an |
|
37 |
36
|
oveq1d |
|
38 |
34 37
|
oveq12d |
|
39 |
29 38
|
eqtr2d |
|
40 |
|
fveq2 |
|
41 |
40
|
oveq1d |
|
42 |
41
|
rspceeqv |
|
43 |
21 39 42
|
syl2anc |
|
44 |
1
|
2sqlem1 |
|
45 |
43 44
|
sylibr |
|
46 |
|
eleq1 |
|
47 |
45 46
|
syl5ibrcom |
|
48 |
47
|
rexlimivv |
|
49 |
20 48
|
impbii |
|