Metamath Proof Explorer


Theorem 2sqlem3

Description: Lemma for 2sqlem5 . (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses 2sq.1 S = ran w i w 2
2sqlem5.1 φ N
2sqlem5.2 φ P
2sqlem4.3 φ A
2sqlem4.4 φ B
2sqlem4.5 φ C
2sqlem4.6 φ D
2sqlem4.7 φ N P = A 2 + B 2
2sqlem4.8 φ P = C 2 + D 2
2sqlem4.9 φ P C B + A D
Assertion 2sqlem3 φ N S

Proof

Step Hyp Ref Expression
1 2sq.1 S = ran w i w 2
2 2sqlem5.1 φ N
3 2sqlem5.2 φ P
4 2sqlem4.3 φ A
5 2sqlem4.4 φ B
6 2sqlem4.5 φ C
7 2sqlem4.6 φ D
8 2sqlem4.7 φ N P = A 2 + B 2
9 2sqlem4.8 φ P = C 2 + D 2
10 2sqlem4.9 φ P C B + A D
11 gzreim A B A + i B i
12 4 5 11 syl2anc φ A + i B i
13 gzreim C D C + i D i
14 6 7 13 syl2anc φ C + i D i
15 gzmulcl A + i B i C + i D i A + i B C + i D i
16 12 14 15 syl2anc φ A + i B C + i D i
17 gzcn A + i B C + i D i A + i B C + i D
18 16 17 syl φ A + i B C + i D
19 prmnn P P
20 3 19 syl φ P
21 20 nncnd φ P
22 20 nnne0d φ P 0
23 18 21 22 divcld φ A + i B C + i D P
24 20 nnred φ P
25 24 18 22 redivd φ A + i B C + i D P = A + i B C + i D P
26 prmz P P
27 3 26 syl φ P
28 dvdsmul2 P P P P P
29 27 27 28 syl2anc φ P P P
30 21 sqvald φ P 2 = P P
31 29 30 breqtrrd φ P P 2
32 2 nnzd φ N
33 zsqcl P P 2
34 27 33 syl φ P 2
35 dvdsmul2 N P 2 P 2 N P 2
36 32 34 35 syl2anc φ P 2 N P 2
37 32 34 zmulcld φ N P 2
38 dvdstr P P 2 N P 2 P P 2 P 2 N P 2 P N P 2
39 27 34 37 38 syl3anc φ P P 2 P 2 N P 2 P N P 2
40 31 36 39 mp2and φ P N P 2
41 gzcn A + i B i A + i B
42 12 41 syl φ A + i B
43 42 abscld φ A + i B
44 43 recnd φ A + i B
45 gzcn C + i D i C + i D
46 14 45 syl φ C + i D
47 46 abscld φ C + i D
48 47 recnd φ C + i D
49 44 48 sqmuld φ A + i B C + i D 2 = A + i B 2 C + i D 2
50 4 zred φ A
51 5 zred φ B
52 50 51 crred φ A + i B = A
53 52 oveq1d φ A + i B 2 = A 2
54 50 51 crimd φ A + i B = B
55 54 oveq1d φ A + i B 2 = B 2
56 53 55 oveq12d φ A + i B 2 + A + i B 2 = A 2 + B 2
57 42 absvalsq2d φ A + i B 2 = A + i B 2 + A + i B 2
58 56 57 8 3eqtr4d φ A + i B 2 = N P
59 6 zred φ C
60 7 zred φ D
61 59 60 crred φ C + i D = C
62 61 oveq1d φ C + i D 2 = C 2
63 59 60 crimd φ C + i D = D
64 63 oveq1d φ C + i D 2 = D 2
65 62 64 oveq12d φ C + i D 2 + C + i D 2 = C 2 + D 2
66 46 absvalsq2d φ C + i D 2 = C + i D 2 + C + i D 2
67 65 66 9 3eqtr4d φ C + i D 2 = P
68 58 67 oveq12d φ A + i B 2 C + i D 2 = N P P
69 2 nncnd φ N
70 69 21 21 mulassd φ N P P = N P P
71 49 68 70 3eqtrd φ A + i B C + i D 2 = N P P
72 42 46 absmuld φ A + i B C + i D = A + i B C + i D
73 72 oveq1d φ A + i B C + i D 2 = A + i B C + i D 2
74 30 oveq2d φ N P 2 = N P P
75 71 73 74 3eqtr4d φ A + i B C + i D 2 = N P 2
76 40 75 breqtrrd φ P A + i B C + i D 2
77 18 absvalsq2d φ A + i B C + i D 2 = A + i B C + i D 2 + A + i B C + i D 2
78 elgz A + i B C + i D i A + i B C + i D A + i B C + i D A + i B C + i D
79 78 simp2bi A + i B C + i D i A + i B C + i D
80 16 79 syl φ A + i B C + i D
81 zsqcl A + i B C + i D A + i B C + i D 2
82 80 81 syl φ A + i B C + i D 2
83 82 zcnd φ A + i B C + i D 2
84 78 simp3bi A + i B C + i D i A + i B C + i D
85 16 84 syl φ A + i B C + i D
86 zsqcl A + i B C + i D A + i B C + i D 2
87 85 86 syl φ A + i B C + i D 2
88 87 zcnd φ A + i B C + i D 2
89 83 88 addcomd φ A + i B C + i D 2 + A + i B C + i D 2 = A + i B C + i D 2 + A + i B C + i D 2
90 77 89 eqtrd φ A + i B C + i D 2 = A + i B C + i D 2 + A + i B C + i D 2
91 76 90 breqtrd φ P A + i B C + i D 2 + A + i B C + i D 2
92 6 zcnd φ C
93 5 zcnd φ B
94 92 93 mulcld φ C B
95 4 zcnd φ A
96 7 zcnd φ D
97 95 96 mulcld φ A D
98 94 97 addcomd φ C B + A D = A D + C B
99 92 93 mulcomd φ C B = B C
100 99 oveq2d φ A D + C B = A D + B C
101 98 100 eqtrd φ C B + A D = A D + B C
102 10 101 breqtrd φ P A D + B C
103 42 46 immuld φ A + i B C + i D = A + i B C + i D + A + i B C + i D
104 52 63 oveq12d φ A + i B C + i D = A D
105 54 61 oveq12d φ A + i B C + i D = B C
106 104 105 oveq12d φ A + i B C + i D + A + i B C + i D = A D + B C
107 103 106 eqtrd φ A + i B C + i D = A D + B C
108 102 107 breqtrrd φ P A + i B C + i D
109 2nn 2
110 109 a1i φ 2
111 prmdvdsexp P A + i B C + i D 2 P A + i B C + i D 2 P A + i B C + i D
112 3 85 110 111 syl3anc φ P A + i B C + i D 2 P A + i B C + i D
113 108 112 mpbird φ P A + i B C + i D 2
114 dvdsadd2b P A + i B C + i D 2 A + i B C + i D 2 P A + i B C + i D 2 P A + i B C + i D 2 P A + i B C + i D 2 + A + i B C + i D 2
115 27 82 87 113 114 syl112anc φ P A + i B C + i D 2 P A + i B C + i D 2 + A + i B C + i D 2
116 91 115 mpbird φ P A + i B C + i D 2
117 prmdvdsexp P A + i B C + i D 2 P A + i B C + i D 2 P A + i B C + i D
118 3 80 110 117 syl3anc φ P A + i B C + i D 2 P A + i B C + i D
119 116 118 mpbid φ P A + i B C + i D
120 dvdsval2 P P 0 A + i B C + i D P A + i B C + i D A + i B C + i D P
121 27 22 80 120 syl3anc φ P A + i B C + i D A + i B C + i D P
122 119 121 mpbid φ A + i B C + i D P
123 25 122 eqeltrd φ A + i B C + i D P
124 24 18 22 imdivd φ A + i B C + i D P = A + i B C + i D P
125 dvdsval2 P P 0 A + i B C + i D P A + i B C + i D A + i B C + i D P
126 27 22 85 125 syl3anc φ P A + i B C + i D A + i B C + i D P
127 108 126 mpbid φ A + i B C + i D P
128 124 127 eqeltrd φ A + i B C + i D P
129 elgz A + i B C + i D P i A + i B C + i D P A + i B C + i D P A + i B C + i D P
130 23 123 128 129 syl3anbrc φ A + i B C + i D P i
131 18 21 22 absdivd φ A + i B C + i D P = A + i B C + i D P
132 20 nnnn0d φ P 0
133 132 nn0ge0d φ 0 P
134 24 133 absidd φ P = P
135 134 oveq2d φ A + i B C + i D P = A + i B C + i D P
136 131 135 eqtrd φ A + i B C + i D P = A + i B C + i D P
137 136 oveq1d φ A + i B C + i D P 2 = A + i B C + i D P 2
138 18 abscld φ A + i B C + i D
139 138 recnd φ A + i B C + i D
140 139 21 22 sqdivd φ A + i B C + i D P 2 = A + i B C + i D 2 P 2
141 75 oveq1d φ A + i B C + i D 2 P 2 = N P 2 P 2
142 20 nnsqcld φ P 2
143 142 nncnd φ P 2
144 142 nnne0d φ P 2 0
145 69 143 144 divcan4d φ N P 2 P 2 = N
146 141 145 eqtrd φ A + i B C + i D 2 P 2 = N
147 137 140 146 3eqtrrd φ N = A + i B C + i D P 2
148 fveq2 x = A + i B C + i D P x = A + i B C + i D P
149 148 oveq1d x = A + i B C + i D P x 2 = A + i B C + i D P 2
150 149 rspceeqv A + i B C + i D P i N = A + i B C + i D P 2 x i N = x 2
151 130 147 150 syl2anc φ x i N = x 2
152 1 2sqlem1 N S x i N = x 2
153 151 152 sylibr φ N S