Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|
2 |
|
2sqlem5.1 |
|
3 |
|
2sqlem5.2 |
|
4 |
|
2sqlem4.3 |
|
5 |
|
2sqlem4.4 |
|
6 |
|
2sqlem4.5 |
|
7 |
|
2sqlem4.6 |
|
8 |
|
2sqlem4.7 |
|
9 |
|
2sqlem4.8 |
|
10 |
2
|
adantr |
|
11 |
3
|
adantr |
|
12 |
4
|
adantr |
|
13 |
5
|
adantr |
|
14 |
6
|
adantr |
|
15 |
7
|
adantr |
|
16 |
8
|
adantr |
|
17 |
9
|
adantr |
|
18 |
|
simpr |
|
19 |
1 10 11 12 13 14 15 16 17 18
|
2sqlem3 |
|
20 |
2
|
adantr |
|
21 |
3
|
adantr |
|
22 |
4
|
znegcld |
|
23 |
22
|
adantr |
|
24 |
5
|
adantr |
|
25 |
6
|
adantr |
|
26 |
7
|
adantr |
|
27 |
4
|
zcnd |
|
28 |
|
sqneg |
|
29 |
27 28
|
syl |
|
30 |
29
|
oveq1d |
|
31 |
8 30
|
eqtr4d |
|
32 |
31
|
adantr |
|
33 |
9
|
adantr |
|
34 |
7
|
zcnd |
|
35 |
27 34
|
mulneg1d |
|
36 |
35
|
oveq2d |
|
37 |
6 5
|
zmulcld |
|
38 |
37
|
zcnd |
|
39 |
4 7
|
zmulcld |
|
40 |
39
|
zcnd |
|
41 |
38 40
|
negsubd |
|
42 |
36 41
|
eqtrd |
|
43 |
42
|
breq2d |
|
44 |
43
|
biimpar |
|
45 |
1 20 21 23 24 25 26 32 33 44
|
2sqlem3 |
|
46 |
|
prmz |
|
47 |
3 46
|
syl |
|
48 |
|
zsqcl |
|
49 |
6 48
|
syl |
|
50 |
2
|
nnzd |
|
51 |
49 50
|
zmulcld |
|
52 |
|
zsqcl |
|
53 |
4 52
|
syl |
|
54 |
51 53
|
zsubcld |
|
55 |
|
dvdsmul1 |
|
56 |
47 54 55
|
syl2anc |
|
57 |
6 4
|
zmulcld |
|
58 |
57
|
zcnd |
|
59 |
58
|
sqcld |
|
60 |
38
|
sqcld |
|
61 |
40
|
sqcld |
|
62 |
59 60 61
|
pnpcand |
|
63 |
6
|
zcnd |
|
64 |
63 27
|
sqmuld |
|
65 |
5
|
zcnd |
|
66 |
63 65
|
sqmuld |
|
67 |
64 66
|
oveq12d |
|
68 |
63
|
sqcld |
|
69 |
53
|
zcnd |
|
70 |
65
|
sqcld |
|
71 |
68 69 70
|
adddid |
|
72 |
67 71
|
eqtr4d |
|
73 |
2
|
nncnd |
|
74 |
47
|
zcnd |
|
75 |
73 74
|
mulcomd |
|
76 |
8 75
|
eqtr3d |
|
77 |
76
|
oveq2d |
|
78 |
68 74 73
|
mul12d |
|
79 |
77 78
|
eqtrd |
|
80 |
72 79
|
eqtrd |
|
81 |
27 34
|
sqmuld |
|
82 |
34
|
sqcld |
|
83 |
69 82
|
mulcomd |
|
84 |
81 83
|
eqtrd |
|
85 |
64 84
|
oveq12d |
|
86 |
49
|
zcnd |
|
87 |
86 82 69
|
adddird |
|
88 |
85 87
|
eqtr4d |
|
89 |
9
|
oveq1d |
|
90 |
88 89
|
eqtr4d |
|
91 |
80 90
|
oveq12d |
|
92 |
51
|
zcnd |
|
93 |
74 92 69
|
subdid |
|
94 |
91 93
|
eqtr4d |
|
95 |
62 94
|
eqtr3d |
|
96 |
|
subsq |
|
97 |
38 40 96
|
syl2anc |
|
98 |
95 97
|
eqtr3d |
|
99 |
56 98
|
breqtrd |
|
100 |
37 39
|
zaddcld |
|
101 |
37 39
|
zsubcld |
|
102 |
|
euclemma |
|
103 |
3 100 101 102
|
syl3anc |
|
104 |
99 103
|
mpbid |
|
105 |
19 45 104
|
mpjaodan |
|