Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|
2 |
|
2sqlem7.2 |
|
3 |
|
simpr |
|
4 |
3
|
reximi |
|
5 |
4
|
reximi |
|
6 |
1
|
2sqlem2 |
|
7 |
5 6
|
sylibr |
|
8 |
|
ax-1ne0 |
|
9 |
|
gcdeq0 |
|
10 |
9
|
adantr |
|
11 |
|
simpr |
|
12 |
11
|
eqeq1d |
|
13 |
10 12
|
bitr3d |
|
14 |
13
|
necon3bbid |
|
15 |
8 14
|
mpbiri |
|
16 |
|
zsqcl2 |
|
17 |
16
|
ad2antrr |
|
18 |
17
|
nn0red |
|
19 |
17
|
nn0ge0d |
|
20 |
|
zsqcl2 |
|
21 |
20
|
ad2antlr |
|
22 |
21
|
nn0red |
|
23 |
21
|
nn0ge0d |
|
24 |
|
add20 |
|
25 |
18 19 22 23 24
|
syl22anc |
|
26 |
|
zcn |
|
27 |
26
|
ad2antrr |
|
28 |
|
zcn |
|
29 |
28
|
ad2antlr |
|
30 |
|
sqeq0 |
|
31 |
|
sqeq0 |
|
32 |
30 31
|
bi2anan9 |
|
33 |
27 29 32
|
syl2anc |
|
34 |
25 33
|
bitrd |
|
35 |
15 34
|
mtbird |
|
36 |
|
nn0addcl |
|
37 |
16 20 36
|
syl2an |
|
38 |
37
|
adantr |
|
39 |
|
elnn0 |
|
40 |
38 39
|
sylib |
|
41 |
40
|
ord |
|
42 |
35 41
|
mt3d |
|
43 |
|
eleq1 |
|
44 |
42 43
|
syl5ibrcom |
|
45 |
44
|
expimpd |
|
46 |
45
|
rexlimivv |
|
47 |
7 46
|
elind |
|
48 |
47
|
abssi |
|
49 |
2 48
|
eqsstri |
|