Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|
2 |
|
2sqlem7.2 |
|
3 |
|
2sqlem9.5 |
|
4 |
|
2sqlem9.7 |
|
5 |
|
2sqlem8.n |
|
6 |
|
2sqlem8.m |
|
7 |
|
2sqlem8.1 |
|
8 |
|
2sqlem8.2 |
|
9 |
|
2sqlem8.3 |
|
10 |
|
2sqlem8.4 |
|
11 |
|
2sqlem8.c |
|
12 |
|
2sqlem8.d |
|
13 |
|
eluz2b3 |
|
14 |
6 13
|
sylib |
|
15 |
14
|
simpld |
|
16 |
7 15 11
|
4sqlem5 |
|
17 |
16
|
simpld |
|
18 |
8 15 12
|
4sqlem5 |
|
19 |
18
|
simpld |
|
20 |
14
|
simprd |
|
21 |
|
simpr |
|
22 |
7 15 11 21
|
4sqlem9 |
|
23 |
22
|
ex |
|
24 |
|
eluzelz |
|
25 |
6 24
|
syl |
|
26 |
|
dvdssq |
|
27 |
25 7 26
|
syl2anc |
|
28 |
23 27
|
sylibrd |
|
29 |
|
simpr |
|
30 |
8 15 12 29
|
4sqlem9 |
|
31 |
30
|
ex |
|
32 |
|
dvdssq |
|
33 |
25 8 32
|
syl2anc |
|
34 |
31 33
|
sylibrd |
|
35 |
|
ax-1ne0 |
|
36 |
35
|
a1i |
|
37 |
9 36
|
eqnetrd |
|
38 |
37
|
neneqd |
|
39 |
|
gcdeq0 |
|
40 |
7 8 39
|
syl2anc |
|
41 |
38 40
|
mtbid |
|
42 |
|
dvdslegcd |
|
43 |
25 7 8 41 42
|
syl31anc |
|
44 |
28 34 43
|
syl2and |
|
45 |
9
|
breq2d |
|
46 |
|
nnle1eq1 |
|
47 |
15 46
|
syl |
|
48 |
45 47
|
bitrd |
|
49 |
44 48
|
sylibd |
|
50 |
49
|
necon3ad |
|
51 |
20 50
|
mpd |
|
52 |
17
|
zcnd |
|
53 |
|
sqeq0 |
|
54 |
52 53
|
syl |
|
55 |
19
|
zcnd |
|
56 |
|
sqeq0 |
|
57 |
55 56
|
syl |
|
58 |
54 57
|
anbi12d |
|
59 |
51 58
|
mtbid |
|
60 |
|
gcdn0cl |
|
61 |
17 19 59 60
|
syl21anc |
|