Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|
2 |
|
2sqlem7.2 |
|
3 |
|
2sqlem9.5 |
|
4 |
|
2sqlem9.7 |
|
5 |
|
2sqlem9.6 |
|
6 |
|
2sqlem9.4 |
|
7 |
|
eqeq1 |
|
8 |
7
|
anbi2d |
|
9 |
8
|
2rexbidv |
|
10 |
|
oveq1 |
|
11 |
10
|
eqeq1d |
|
12 |
|
oveq1 |
|
13 |
12
|
oveq1d |
|
14 |
13
|
eqeq2d |
|
15 |
11 14
|
anbi12d |
|
16 |
|
oveq2 |
|
17 |
16
|
eqeq1d |
|
18 |
|
oveq1 |
|
19 |
18
|
oveq2d |
|
20 |
19
|
eqeq2d |
|
21 |
17 20
|
anbi12d |
|
22 |
15 21
|
cbvrex2vw |
|
23 |
9 22
|
bitrdi |
|
24 |
23 2
|
elab2g |
|
25 |
24
|
ibi |
|
26 |
6 25
|
syl |
|
27 |
|
simpr |
|
28 |
|
1z |
|
29 |
|
zgz |
|
30 |
28 29
|
ax-mp |
|
31 |
|
sq1 |
|
32 |
31
|
eqcomi |
|
33 |
|
fveq2 |
|
34 |
|
abs1 |
|
35 |
33 34
|
eqtrdi |
|
36 |
35
|
oveq1d |
|
37 |
36
|
rspceeqv |
|
38 |
30 32 37
|
mp2an |
|
39 |
1
|
2sqlem1 |
|
40 |
38 39
|
mpbir |
|
41 |
27 40
|
eqeltrdi |
|
42 |
3
|
ad2antrr |
|
43 |
4
|
ad2antrr |
|
44 |
1 2
|
2sqlem7 |
|
45 |
|
inss2 |
|
46 |
44 45
|
sstri |
|
47 |
46 6
|
sselid |
|
48 |
47
|
ad2antrr |
|
49 |
5
|
ad2antrr |
|
50 |
|
simprr |
|
51 |
|
eluz2b3 |
|
52 |
49 50 51
|
sylanbrc |
|
53 |
|
simplrl |
|
54 |
|
simplrr |
|
55 |
|
simprll |
|
56 |
|
simprlr |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
1 2 42 43 48 52 53 54 55 56 57 58 59 60
|
2sqlem8 |
|
62 |
61
|
anassrs |
|
63 |
41 62
|
pm2.61dane |
|
64 |
63
|
ex |
|
65 |
64
|
rexlimdvva |
|
66 |
26 65
|
mpd |
|