Step |
Hyp |
Ref |
Expression |
1 |
|
2sqnn0 |
|
2 |
|
elnn0 |
|
3 |
|
elnn0 |
|
4 |
|
oveq1 |
|
5 |
4
|
oveq1d |
|
6 |
5
|
eqeq2d |
|
7 |
|
oveq1 |
|
8 |
7
|
oveq2d |
|
9 |
8
|
eqeq2d |
|
10 |
6 9
|
rspc2ev |
|
11 |
10
|
3expia |
|
12 |
11
|
a1d |
|
13 |
12
|
expcom |
|
14 |
|
sq0i |
|
15 |
14
|
adantr |
|
16 |
15
|
oveq1d |
|
17 |
|
nncn |
|
18 |
17
|
sqcld |
|
19 |
18
|
addid2d |
|
20 |
19
|
adantl |
|
21 |
16 20
|
eqtrd |
|
22 |
21
|
eqeq2d |
|
23 |
|
eleq1 |
|
24 |
23
|
adantl |
|
25 |
|
nnz |
|
26 |
|
sqnprm |
|
27 |
25 26
|
syl |
|
28 |
27
|
pm2.21d |
|
29 |
28
|
adantr |
|
30 |
24 29
|
sylbid |
|
31 |
30
|
ex |
|
32 |
31
|
adantl |
|
33 |
22 32
|
sylbid |
|
34 |
33
|
com23 |
|
35 |
34
|
expcom |
|
36 |
13 35
|
jaod |
|
37 |
|
sq0i |
|
38 |
37
|
adantr |
|
39 |
38
|
oveq2d |
|
40 |
|
nncn |
|
41 |
40
|
sqcld |
|
42 |
41
|
addid1d |
|
43 |
42
|
adantl |
|
44 |
39 43
|
eqtrd |
|
45 |
44
|
eqeq2d |
|
46 |
|
eleq1 |
|
47 |
46
|
adantl |
|
48 |
|
nnz |
|
49 |
|
sqnprm |
|
50 |
48 49
|
syl |
|
51 |
50
|
pm2.21d |
|
52 |
51
|
adantr |
|
53 |
47 52
|
sylbid |
|
54 |
53
|
ex |
|
55 |
54
|
adantl |
|
56 |
45 55
|
sylbid |
|
57 |
56
|
com23 |
|
58 |
57
|
ex |
|
59 |
14 37
|
oveqan12rd |
|
60 |
|
00id |
|
61 |
59 60
|
eqtrdi |
|
62 |
61
|
eqeq2d |
|
63 |
|
eleq1 |
|
64 |
|
0nprm |
|
65 |
64
|
pm2.21i |
|
66 |
63 65
|
syl6bi |
|
67 |
62 66
|
syl6bi |
|
68 |
67
|
com23 |
|
69 |
68
|
ex |
|
70 |
58 69
|
jaod |
|
71 |
36 70
|
jaoi |
|
72 |
3 71
|
sylbi |
|
73 |
72
|
com12 |
|
74 |
2 73
|
sylbi |
|
75 |
74
|
imp |
|
76 |
75
|
com12 |
|
77 |
76
|
adantr |
|
78 |
77
|
rexlimdvv |
|
79 |
1 78
|
mpd |
|