Metamath Proof Explorer


Theorem 2sqreulem2

Description: Lemma 2 for 2sqreu etc. (Contributed by AV, 25-Jun-2023)

Ref Expression
Assertion 2sqreulem2 A 0 B 0 C 0 A 2 + B 2 = A 2 + C 2 B = C

Proof

Step Hyp Ref Expression
1 nn0cn A 0 A
2 1 sqcld A 0 A 2
3 2 3ad2ant1 A 0 B 0 C 0 A 2
4 nn0cn B 0 B
5 4 sqcld B 0 B 2
6 5 3ad2ant2 A 0 B 0 C 0 B 2
7 nn0cn C 0 C
8 7 sqcld C 0 C 2
9 8 3ad2ant3 A 0 B 0 C 0 C 2
10 3 6 9 addcand A 0 B 0 C 0 A 2 + B 2 = A 2 + C 2 B 2 = C 2
11 nn0sq11 B 0 C 0 B 2 = C 2 B = C
12 11 biimpd B 0 C 0 B 2 = C 2 B = C
13 12 3adant1 A 0 B 0 C 0 B 2 = C 2 B = C
14 10 13 sylbid A 0 B 0 C 0 A 2 + B 2 = A 2 + C 2 B = C