Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
All primes 4n+1 are the sum of two squares
2sqreulem2
Next ⟩
2sqreulem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
2sqreulem2
Description:
Lemma 2 for
2sqreu
etc.
(Contributed by
AV
, 25-Jun-2023)
Ref
Expression
Assertion
2sqreulem2
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
+
B
2
=
A
2
+
C
2
→
B
=
C
Proof
Step
Hyp
Ref
Expression
1
nn0cn
⊢
A
∈
ℕ
0
→
A
∈
ℂ
2
1
sqcld
⊢
A
∈
ℕ
0
→
A
2
∈
ℂ
3
2
3ad2ant1
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
∈
ℂ
4
nn0cn
⊢
B
∈
ℕ
0
→
B
∈
ℂ
5
4
sqcld
⊢
B
∈
ℕ
0
→
B
2
∈
ℂ
6
5
3ad2ant2
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
B
2
∈
ℂ
7
nn0cn
⊢
C
∈
ℕ
0
→
C
∈
ℂ
8
7
sqcld
⊢
C
∈
ℕ
0
→
C
2
∈
ℂ
9
8
3ad2ant3
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
C
2
∈
ℂ
10
3
6
9
addcand
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
+
B
2
=
A
2
+
C
2
↔
B
2
=
C
2
11
nn0sq11
⊢
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
B
2
=
C
2
↔
B
=
C
12
11
biimpd
⊢
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
B
2
=
C
2
→
B
=
C
13
12
3adant1
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
B
2
=
C
2
→
B
=
C
14
10
13
sylbid
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
+
B
2
=
A
2
+
C
2
→
B
=
C