Metamath Proof Explorer


Theorem 2sqreulem3

Description: Lemma 3 for 2sqreu etc. (Contributed by AV, 25-Jun-2023)

Ref Expression
Assertion 2sqreulem3 A 0 B 0 C 0 φ A 2 + B 2 = P ψ A 2 + C 2 = P B = C

Proof

Step Hyp Ref Expression
1 eqeq2 P = A 2 + B 2 A 2 + C 2 = P A 2 + C 2 = A 2 + B 2
2 1 eqcoms A 2 + B 2 = P A 2 + C 2 = P A 2 + C 2 = A 2 + B 2
3 2 adantl A 0 B 0 C 0 A 2 + B 2 = P A 2 + C 2 = P A 2 + C 2 = A 2 + B 2
4 eqcom A 2 + C 2 = A 2 + B 2 A 2 + B 2 = A 2 + C 2
5 2sqreulem2 A 0 B 0 C 0 A 2 + B 2 = A 2 + C 2 B = C
6 4 5 syl5bi A 0 B 0 C 0 A 2 + C 2 = A 2 + B 2 B = C
7 6 adantr A 0 B 0 C 0 A 2 + B 2 = P A 2 + C 2 = A 2 + B 2 B = C
8 3 7 sylbid A 0 B 0 C 0 A 2 + B 2 = P A 2 + C 2 = P B = C
9 8 adantld A 0 B 0 C 0 A 2 + B 2 = P ψ A 2 + C 2 = P B = C
10 9 ex A 0 B 0 C 0 A 2 + B 2 = P ψ A 2 + C 2 = P B = C
11 10 adantld A 0 B 0 C 0 φ A 2 + B 2 = P ψ A 2 + C 2 = P B = C
12 11 impd A 0 B 0 C 0 φ A 2 + B 2 = P ψ A 2 + C 2 = P B = C
13 12 3expb A 0 B 0 C 0 φ A 2 + B 2 = P ψ A 2 + C 2 = P B = C