Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
All primes 4n+1 are the sum of two squares
2sqreulem3
Next ⟩
2sqreulem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
2sqreulem3
Description:
Lemma 3 for
2sqreu
etc.
(Contributed by
AV
, 25-Jun-2023)
Ref
Expression
Assertion
2sqreulem3
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
φ
∧
A
2
+
B
2
=
P
∧
ψ
∧
A
2
+
C
2
=
P
→
B
=
C
Proof
Step
Hyp
Ref
Expression
1
eqeq2
⊢
P
=
A
2
+
B
2
→
A
2
+
C
2
=
P
↔
A
2
+
C
2
=
A
2
+
B
2
2
1
eqcoms
⊢
A
2
+
B
2
=
P
→
A
2
+
C
2
=
P
↔
A
2
+
C
2
=
A
2
+
B
2
3
2
adantl
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
∧
A
2
+
B
2
=
P
→
A
2
+
C
2
=
P
↔
A
2
+
C
2
=
A
2
+
B
2
4
eqcom
⊢
A
2
+
C
2
=
A
2
+
B
2
↔
A
2
+
B
2
=
A
2
+
C
2
5
2sqreulem2
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
+
B
2
=
A
2
+
C
2
→
B
=
C
6
4
5
syl5bi
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
+
C
2
=
A
2
+
B
2
→
B
=
C
7
6
adantr
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
∧
A
2
+
B
2
=
P
→
A
2
+
C
2
=
A
2
+
B
2
→
B
=
C
8
3
7
sylbid
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
∧
A
2
+
B
2
=
P
→
A
2
+
C
2
=
P
→
B
=
C
9
8
adantld
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
∧
A
2
+
B
2
=
P
→
ψ
∧
A
2
+
C
2
=
P
→
B
=
C
10
9
ex
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
A
2
+
B
2
=
P
→
ψ
∧
A
2
+
C
2
=
P
→
B
=
C
11
10
adantld
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
φ
∧
A
2
+
B
2
=
P
→
ψ
∧
A
2
+
C
2
=
P
→
B
=
C
12
11
impd
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
φ
∧
A
2
+
B
2
=
P
∧
ψ
∧
A
2
+
C
2
=
P
→
B
=
C
13
12
3expb
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
C
∈
ℕ
0
→
φ
∧
A
2
+
B
2
=
P
∧
ψ
∧
A
2
+
C
2
=
P
→
B
=
C