Metamath Proof Explorer


Theorem 2sqreulem4

Description: Lemma 4 for 2sqreu et. (Contributed by AV, 25-Jun-2023)

Ref Expression
Hypothesis 2sqreulem4.1 φ ψ a 2 + b 2 = P
Assertion 2sqreulem4 a 0 * b 0 φ

Proof

Step Hyp Ref Expression
1 2sqreulem4.1 φ ψ a 2 + b 2 = P
2 2sqreulem3 a 0 b 0 c 0 ψ a 2 + b 2 = P [˙c / b]˙ ψ a 2 + c 2 = P b = c
3 2 ralrimivva a 0 b 0 c 0 ψ a 2 + b 2 = P [˙c / b]˙ ψ a 2 + c 2 = P b = c
4 1 rmobii * b 0 φ * b 0 ψ a 2 + b 2 = P
5 nfcv _ b 0
6 nfcv _ c 0
7 nfsbc1v b [˙c / b]˙ ψ
8 nfv b a 2 + c 2 = P
9 7 8 nfan b [˙c / b]˙ ψ a 2 + c 2 = P
10 sbceq1a b = c ψ [˙c / b]˙ ψ
11 oveq1 b = c b 2 = c 2
12 11 oveq2d b = c a 2 + b 2 = a 2 + c 2
13 12 eqeq1d b = c a 2 + b 2 = P a 2 + c 2 = P
14 10 13 anbi12d b = c ψ a 2 + b 2 = P [˙c / b]˙ ψ a 2 + c 2 = P
15 5 6 9 14 rmo4f * b 0 ψ a 2 + b 2 = P b 0 c 0 ψ a 2 + b 2 = P [˙c / b]˙ ψ a 2 + c 2 = P b = c
16 4 15 bitri * b 0 φ b 0 c 0 ψ a 2 + b 2 = P [˙c / b]˙ ψ a 2 + c 2 = P b = c
17 3 16 sylibr a 0 * b 0 φ
18 17 rgen a 0 * b 0 φ