Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
All primes 4n+1 are the sum of two squares
2sqreulem4
Next ⟩
2sqreunnlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
2sqreulem4
Description:
Lemma 4 for
2sqreu
et.
(Contributed by
AV
, 25-Jun-2023)
Ref
Expression
Hypothesis
2sqreulem4.1
⊢
φ
↔
ψ
∧
a
2
+
b
2
=
P
Assertion
2sqreulem4
⊢
∀
a
∈
ℕ
0
∃
*
b
∈
ℕ
0
φ
Proof
Step
Hyp
Ref
Expression
1
2sqreulem4.1
⊢
φ
↔
ψ
∧
a
2
+
b
2
=
P
2
2sqreulem3
⊢
a
∈
ℕ
0
∧
b
∈
ℕ
0
∧
c
∈
ℕ
0
→
ψ
∧
a
2
+
b
2
=
P
∧
[
˙
c
/
b
]
˙
ψ
∧
a
2
+
c
2
=
P
→
b
=
c
3
2
ralrimivva
⊢
a
∈
ℕ
0
→
∀
b
∈
ℕ
0
∀
c
∈
ℕ
0
ψ
∧
a
2
+
b
2
=
P
∧
[
˙
c
/
b
]
˙
ψ
∧
a
2
+
c
2
=
P
→
b
=
c
4
1
rmobii
⊢
∃
*
b
∈
ℕ
0
φ
↔
∃
*
b
∈
ℕ
0
ψ
∧
a
2
+
b
2
=
P
5
nfcv
⊢
Ⅎ
_
b
ℕ
0
6
nfcv
⊢
Ⅎ
_
c
ℕ
0
7
nfsbc1v
⊢
Ⅎ
b
[
˙
c
/
b
]
˙
ψ
8
nfv
⊢
Ⅎ
b
a
2
+
c
2
=
P
9
7
8
nfan
⊢
Ⅎ
b
[
˙
c
/
b
]
˙
ψ
∧
a
2
+
c
2
=
P
10
sbceq1a
⊢
b
=
c
→
ψ
↔
[
˙
c
/
b
]
˙
ψ
11
oveq1
⊢
b
=
c
→
b
2
=
c
2
12
11
oveq2d
⊢
b
=
c
→
a
2
+
b
2
=
a
2
+
c
2
13
12
eqeq1d
⊢
b
=
c
→
a
2
+
b
2
=
P
↔
a
2
+
c
2
=
P
14
10
13
anbi12d
⊢
b
=
c
→
ψ
∧
a
2
+
b
2
=
P
↔
[
˙
c
/
b
]
˙
ψ
∧
a
2
+
c
2
=
P
15
5
6
9
14
rmo4f
⊢
∃
*
b
∈
ℕ
0
ψ
∧
a
2
+
b
2
=
P
↔
∀
b
∈
ℕ
0
∀
c
∈
ℕ
0
ψ
∧
a
2
+
b
2
=
P
∧
[
˙
c
/
b
]
˙
ψ
∧
a
2
+
c
2
=
P
→
b
=
c
16
4
15
bitri
⊢
∃
*
b
∈
ℕ
0
φ
↔
∀
b
∈
ℕ
0
∀
c
∈
ℕ
0
ψ
∧
a
2
+
b
2
=
P
∧
[
˙
c
/
b
]
˙
ψ
∧
a
2
+
c
2
=
P
→
b
=
c
17
3
16
sylibr
⊢
a
∈
ℕ
0
→
∃
*
b
∈
ℕ
0
φ
18
17
rgen
⊢
∀
a
∈
ℕ
0
∃
*
b
∈
ℕ
0
φ