Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreulem1 |
|
2 |
|
oveq1 |
|
3 |
2
|
oveq2d |
|
4 |
3
|
adantr |
|
5 |
|
nn0cn |
|
6 |
5
|
sqcld |
|
7 |
|
2times |
|
8 |
7
|
eqcomd |
|
9 |
6 8
|
syl |
|
10 |
9
|
adantl |
|
11 |
10
|
ad2antrl |
|
12 |
4 11
|
eqtrd |
|
13 |
12
|
eqeq1d |
|
14 |
|
oveq1 |
|
15 |
14
|
eqeq1d |
|
16 |
|
eleq1 |
|
17 |
15 16
|
anbi12d |
|
18 |
|
nn0z |
|
19 |
|
2nn0 |
|
20 |
|
zexpcl |
|
21 |
18 19 20
|
sylancl |
|
22 |
|
2mulprm |
|
23 |
21 22
|
syl |
|
24 |
|
oveq2 |
|
25 |
|
2t1e2 |
|
26 |
24 25
|
eqtrdi |
|
27 |
26
|
oveq1d |
|
28 |
|
2re |
|
29 |
|
4nn |
|
30 |
|
nnrp |
|
31 |
29 30
|
ax-mp |
|
32 |
|
0le2 |
|
33 |
|
2lt4 |
|
34 |
|
modid |
|
35 |
28 31 32 33 34
|
mp4an |
|
36 |
27 35
|
eqtrdi |
|
37 |
36
|
eqeq1d |
|
38 |
|
1ne2 |
|
39 |
|
eqcom |
|
40 |
|
eqneqall |
|
41 |
40
|
com12 |
|
42 |
39 41
|
syl5bi |
|
43 |
38 42
|
ax-mp |
|
44 |
37 43
|
syl6bi |
|
45 |
23 44
|
syl6bi |
|
46 |
45
|
impcomd |
|
47 |
46
|
com12 |
|
48 |
17 47
|
syl6bi |
|
49 |
48
|
expd |
|
50 |
49
|
com34 |
|
51 |
50
|
eqcoms |
|
52 |
51
|
com14 |
|
53 |
52
|
imp31 |
|
54 |
53
|
ad2antrl |
|
55 |
13 54
|
sylbid |
|
56 |
55
|
expimpd |
|
57 |
|
2a1 |
|
58 |
56 57
|
pm2.61ine |
|
59 |
58
|
pm4.71d |
|
60 |
|
nn0re |
|
61 |
60
|
adantl |
|
62 |
|
nn0re |
|
63 |
|
ltlen |
|
64 |
61 62 63
|
syl2an |
|
65 |
64
|
bibi2d |
|
66 |
65
|
adantr |
|
67 |
59 66
|
mpbird |
|
68 |
67
|
ex |
|
69 |
68
|
pm5.32rd |
|
70 |
69
|
reubidva |
|
71 |
70
|
reubidva |
|
72 |
1 71
|
mpbid |
|