Metamath Proof Explorer


Theorem 2sqreunnltblem

Description: Lemma for 2sqreunnltb . (Contributed by AV, 11-Jun-2023) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023)

Ref Expression
Assertion 2sqreunnltblem PPmod4=1∃!a∃!ba<ba2+b2=P

Proof

Step Hyp Ref Expression
1 2sqreunnltlem PPmod4=1∃!a∃!ba<ba2+b2=P
2 1 ex PPmod4=1∃!a∃!ba<ba2+b2=P
3 2reu2rex ∃!a∃!ba<ba2+b2=Paba<ba2+b2=P
4 eqeq2 P=2a2+b2=Pa2+b2=2
5 4 adantr P=2aba2+b2=Pa2+b2=2
6 nnnn0 aa0
7 nnnn0 bb0
8 2sq2 a0b0a2+b2=2a=1b=1
9 6 7 8 syl2an aba2+b2=2a=1b=1
10 breq12 a=1b=1a<b1<1
11 1re 1
12 11 ltnri ¬1<1
13 12 pm2.21i 1<1Pmod4=1
14 10 13 biimtrdi a=1b=1a<bPmod4=1
15 9 14 biimtrdi aba2+b2=2a<bPmod4=1
16 15 adantl P=2aba2+b2=2a<bPmod4=1
17 5 16 sylbid P=2aba2+b2=Pa<bPmod4=1
18 17 impcomd P=2aba<ba2+b2=PPmod4=1
19 18 rexlimdvva P=2aba<ba2+b2=PPmod4=1
20 3 19 syl5 P=2∃!a∃!ba<ba2+b2=PPmod4=1
21 20 a1d P=2P∃!a∃!ba<ba2+b2=PPmod4=1
22 nnssz
23 id a2+b2=Pa2+b2=P
24 23 eqcomd a2+b2=PP=a2+b2
25 24 adantl a<ba2+b2=PP=a2+b2
26 25 reximi ba<ba2+b2=PbP=a2+b2
27 26 reximi aba<ba2+b2=PabP=a2+b2
28 ssrexv bP=a2+b2bP=a2+b2
29 22 28 ax-mp bP=a2+b2bP=a2+b2
30 29 reximi abP=a2+b2abP=a2+b2
31 3 27 30 3syl ∃!a∃!ba<ba2+b2=PabP=a2+b2
32 ssrexv abP=a2+b2abP=a2+b2
33 22 31 32 mpsyl ∃!a∃!ba<ba2+b2=PabP=a2+b2
34 33 adantl P∃!a∃!ba<ba2+b2=PabP=a2+b2
35 2sqb PabP=a2+b2P=2Pmod4=1
36 35 adantr P∃!a∃!ba<ba2+b2=PabP=a2+b2P=2Pmod4=1
37 34 36 mpbid P∃!a∃!ba<ba2+b2=PP=2Pmod4=1
38 37 ord P∃!a∃!ba<ba2+b2=P¬P=2Pmod4=1
39 38 expcom ∃!a∃!ba<ba2+b2=PP¬P=2Pmod4=1
40 39 com13 ¬P=2P∃!a∃!ba<ba2+b2=PPmod4=1
41 21 40 pm2.61i P∃!a∃!ba<ba2+b2=PPmod4=1
42 2 41 impbid PPmod4=1∃!a∃!ba<ba2+b2=P