Description: Lemma for 2sqreunnltb . (Contributed by AV, 11-Jun-2023) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqreunnltblem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreunnltlem | |
|
2 | 1 | ex | |
3 | 2reu2rex | |
|
4 | eqeq2 | |
|
5 | 4 | adantr | |
6 | nnnn0 | |
|
7 | nnnn0 | |
|
8 | 2sq2 | |
|
9 | 6 7 8 | syl2an | |
10 | breq12 | |
|
11 | 1re | |
|
12 | 11 | ltnri | |
13 | 12 | pm2.21i | |
14 | 10 13 | biimtrdi | |
15 | 9 14 | biimtrdi | |
16 | 15 | adantl | |
17 | 5 16 | sylbid | |
18 | 17 | impcomd | |
19 | 18 | rexlimdvva | |
20 | 3 19 | syl5 | |
21 | 20 | a1d | |
22 | nnssz | |
|
23 | id | |
|
24 | 23 | eqcomd | |
25 | 24 | adantl | |
26 | 25 | reximi | |
27 | 26 | reximi | |
28 | ssrexv | |
|
29 | 22 28 | ax-mp | |
30 | 29 | reximi | |
31 | 3 27 30 | 3syl | |
32 | ssrexv | |
|
33 | 22 31 32 | mpsyl | |
34 | 33 | adantl | |
35 | 2sqb | |
|
36 | 35 | adantr | |
37 | 34 36 | mpbid | |
38 | 37 | ord | |
39 | 38 | expcom | |
40 | 39 | com13 | |
41 | 21 40 | pm2.61i | |
42 | 2 41 | impbid | |