Metamath Proof Explorer


Theorem 2stdpc4

Description: A double specialization using explicit substitution. This is Theorem PM*11.1 in WhiteheadRussell p. 159. See stdpc4 for the analogous single specialization. See 2sp for another double specialization. (Contributed by Andrew Salmon, 24-May-2011) (Revised by BJ, 21-Oct-2018)

Ref Expression
Assertion 2stdpc4 x y φ z x w y φ

Proof

Step Hyp Ref Expression
1 stdpc4 y φ w y φ
2 1 alimi x y φ x w y φ
3 stdpc4 x w y φ z x w y φ
4 2 3 syl x y φ z x w y φ