Metamath Proof Explorer


Theorem 2strbas1

Description: The base set of a constructed two-slot structure. Version of 2strbas not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g G = Base ndx B N + ˙
2str1.b Base ndx < N
2str1.n N
Assertion 2strbas1 B V B = Base G

Proof

Step Hyp Ref Expression
1 2str1.g G = Base ndx B N + ˙
2 2str1.b Base ndx < N
3 2str1.n N
4 1 2 3 2strstr1 G Struct Base ndx N
5 baseid Base = Slot Base ndx
6 snsspr1 Base ndx B Base ndx B N + ˙
7 6 1 sseqtrri Base ndx B G
8 4 5 7 strfv B V B = Base G