Metamath Proof Explorer


Theorem 2strop1

Description: The other slot of a constructed two-slot structure. Version of 2strop not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g G = Base ndx B N + ˙
2str1.b Base ndx < N
2str1.n N
2str1.e E = Slot N
Assertion 2strop1 + ˙ V + ˙ = E G

Proof

Step Hyp Ref Expression
1 2str1.g G = Base ndx B N + ˙
2 2str1.b Base ndx < N
3 2str1.n N
4 2str1.e E = Slot N
5 1 2 3 2strstr1 G Struct Base ndx N
6 4 3 ndxid E = Slot E ndx
7 snsspr2 N + ˙ Base ndx B N + ˙
8 4 3 ndxarg E ndx = N
9 8 opeq1i E ndx + ˙ = N + ˙
10 9 sneqi E ndx + ˙ = N + ˙
11 7 10 1 3sstr4i E ndx + ˙ G
12 5 6 11 strfv + ˙ V + ˙ = E G