Metamath Proof Explorer


Theorem 2strstr1

Description: A constructed two-slot structure. Version of 2strstr not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g G = Base ndx B N + ˙
2str1.b Base ndx < N
2str1.n N
Assertion 2strstr1 G Struct Base ndx N

Proof

Step Hyp Ref Expression
1 2str1.g G = Base ndx B N + ˙
2 2str1.b Base ndx < N
3 2str1.n N
4 eqid Slot N = Slot N
5 4 3 ndxarg Slot N ndx = N
6 5 eqcomi N = Slot N ndx
7 6 opeq1i N + ˙ = Slot N ndx + ˙
8 7 preq2i Base ndx B N + ˙ = Base ndx B Slot N ndx + ˙
9 1 8 eqtri G = Base ndx B Slot N ndx + ˙
10 basendx Base ndx = 1
11 10 2 eqbrtrri 1 < N
12 9 4 11 3 2strstr G Struct 1 N
13 10 opeq1i Base ndx N = 1 N
14 12 13 breqtrri G Struct Base ndx N