Metamath Proof Explorer


Theorem 2sumeq2dv

Description: Equality deduction for double sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypothesis 2sumeq2dv.1 φ j A k B C = D
Assertion 2sumeq2dv φ j A k B C = j A k B D

Proof

Step Hyp Ref Expression
1 2sumeq2dv.1 φ j A k B C = D
2 1 3expa φ j A k B C = D
3 2 sumeq2dv φ j A k B C = k B D
4 3 sumeq2dv φ j A k B C = j A k B D