| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  | 
						
							| 2 | 1 | a1i |  | 
						
							| 3 |  | id |  | 
						
							| 4 | 2 3 | zmulcld |  | 
						
							| 5 | 4 | peano2zd |  | 
						
							| 6 | 5 | zred |  | 
						
							| 7 |  | 2rp |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 | 6 8 | ge0divd |  | 
						
							| 10 | 4 | zcnd |  | 
						
							| 11 |  | 1cnd |  | 
						
							| 12 |  | 2cnne0 |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | divdir |  | 
						
							| 15 | 10 11 13 14 | syl3anc |  | 
						
							| 16 |  | zcn |  | 
						
							| 17 |  | 2cnd |  | 
						
							| 18 |  | 2ne0 |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 16 17 19 | divcan3d |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 15 21 | eqtrd |  | 
						
							| 23 | 22 | breq2d |  | 
						
							| 24 |  | zre |  | 
						
							| 25 |  | halfre |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 24 26 | readdcld |  | 
						
							| 28 |  | halfge0 |  | 
						
							| 29 | 24 26 | addge01d |  | 
						
							| 30 | 28 29 | mpbii |  | 
						
							| 31 |  | 1red |  | 
						
							| 32 |  | halflt1 |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 | 26 31 24 33 | ltadd2dd |  | 
						
							| 35 |  | btwnzge0 |  | 
						
							| 36 | 27 3 30 34 35 | syl22anc |  | 
						
							| 37 | 9 23 36 | 3bitrd |  |