Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
1
|
a1i |
|
3 |
|
id |
|
4 |
2 3
|
zmulcld |
|
5 |
4
|
peano2zd |
|
6 |
5
|
zred |
|
7 |
|
2rp |
|
8 |
7
|
a1i |
|
9 |
6 8
|
ge0divd |
|
10 |
4
|
zcnd |
|
11 |
|
1cnd |
|
12 |
|
2cnne0 |
|
13 |
12
|
a1i |
|
14 |
|
divdir |
|
15 |
10 11 13 14
|
syl3anc |
|
16 |
|
zcn |
|
17 |
|
2cnd |
|
18 |
|
2ne0 |
|
19 |
18
|
a1i |
|
20 |
16 17 19
|
divcan3d |
|
21 |
20
|
oveq1d |
|
22 |
15 21
|
eqtrd |
|
23 |
22
|
breq2d |
|
24 |
|
zre |
|
25 |
|
halfre |
|
26 |
25
|
a1i |
|
27 |
24 26
|
readdcld |
|
28 |
|
halfge0 |
|
29 |
24 26
|
addge01d |
|
30 |
28 29
|
mpbii |
|
31 |
|
1red |
|
32 |
|
halflt1 |
|
33 |
32
|
a1i |
|
34 |
26 31 24 33
|
ltadd2dd |
|
35 |
|
btwnzge0 |
|
36 |
27 3 30 34 35
|
syl22anc |
|
37 |
9 23 36
|
3bitrd |
|