Metamath Proof Explorer


Theorem 2tp1odd

Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021)

Ref Expression
Assertion 2tp1odd A B = 2 A + 1 ¬ 2 B

Proof

Step Hyp Ref Expression
1 id A A
2 oveq2 k = A 2 k = 2 A
3 2 oveq1d k = A 2 k + 1 = 2 A + 1
4 3 eqeq1d k = A 2 k + 1 = 2 A + 1 2 A + 1 = 2 A + 1
5 4 adantl A k = A 2 k + 1 = 2 A + 1 2 A + 1 = 2 A + 1
6 eqidd A 2 A + 1 = 2 A + 1
7 1 5 6 rspcedvd A k 2 k + 1 = 2 A + 1
8 2z 2
9 8 a1i A 2
10 9 1 zmulcld A 2 A
11 10 peano2zd A 2 A + 1
12 odd2np1 2 A + 1 ¬ 2 2 A + 1 k 2 k + 1 = 2 A + 1
13 11 12 syl A ¬ 2 2 A + 1 k 2 k + 1 = 2 A + 1
14 7 13 mpbird A ¬ 2 2 A + 1
15 14 adantr A B = 2 A + 1 ¬ 2 2 A + 1
16 breq2 B = 2 A + 1 2 B 2 2 A + 1
17 16 adantl A B = 2 A + 1 2 B 2 2 A + 1
18 15 17 mtbird A B = 2 A + 1 ¬ 2 B