Metamath Proof Explorer


Theorem 2trld

Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 24-Jan-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
2wlkd.v V = Vtx G
2wlkd.i I = iEdg G
2trld.n φ J K
Assertion 2trld φ F Trails G P

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 2wlkd.v V = Vtx G
7 2wlkd.i I = iEdg G
8 2trld.n φ J K
9 1 2 3 4 5 6 7 2wlkd φ F Walks G P
10 1 2 3 4 5 2wlkdlem7 φ J V K V
11 df-3an J V K V J K J V K V J K
12 10 8 11 sylanbrc φ J V K V J K
13 funcnvs2 J V K V J K Fun ⟨“ JK ”⟩ -1
14 12 13 syl φ Fun ⟨“ JK ”⟩ -1
15 2 cnveqi F -1 = ⟨“ JK ”⟩ -1
16 15 funeqi Fun F -1 Fun ⟨“ JK ”⟩ -1
17 14 16 sylibr φ Fun F -1
18 istrl F Trails G P F Walks G P Fun F -1
19 9 17 18 sylanbrc φ F Trails G P