Metamath Proof Explorer


Theorem 2vmadivsum

Description: The sum sum_ m n <_ x , Lam ( m ) Lam ( n ) / m n is asymptotic to log ^ 2 ( x ) / 2 + O ( log x ) . (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion 2vmadivsum x1+∞n=1xΛnnm=1xnΛmmlogxlogx2𝑂1

Proof

Step Hyp Ref Expression
1 vmadivsumb c+y1+∞i=1yΛiilogyc
2 simpl c+y1+∞i=1yΛiilogycc+
3 simpr c+y1+∞i=1yΛiilogycy1+∞i=1yΛiilogyc
4 2 3 2vmadivsumlem c+y1+∞i=1yΛiilogycx1+∞n=1xΛnnm=1xnΛmmlogxlogx2𝑂1
5 4 rexlimiva c+y1+∞i=1yΛiilogycx1+∞n=1xΛnnm=1xnΛmmlogxlogx2𝑂1
6 1 5 ax-mp x1+∞n=1xΛnnm=1xnΛmmlogxlogx2𝑂1