Metamath Proof Explorer


Theorem 2vmadivsum

Description: The sum sum_ m n <_ x , Lam ( m ) Lam ( n ) / m n is asymptotic to log ^ 2 ( x ) / 2 + O ( log x ) . (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion 2vmadivsum x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1

Proof

Step Hyp Ref Expression
1 vmadivsumb c + y 1 +∞ i = 1 y Λ i i log y c
2 simpl c + y 1 +∞ i = 1 y Λ i i log y c c +
3 simpr c + y 1 +∞ i = 1 y Λ i i log y c y 1 +∞ i = 1 y Λ i i log y c
4 2 3 2vmadivsumlem c + y 1 +∞ i = 1 y Λ i i log y c x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1
5 4 rexlimiva c + y 1 +∞ i = 1 y Λ i i log y c x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1
6 1 5 ax-mp x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1