| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2vmadivsum.1 |
|
| 2 |
|
2vmadivsum.2 |
|
| 3 |
|
vmalogdivsum2 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
fzfid |
|
| 6 |
|
elfznn |
|
| 7 |
6
|
adantl |
|
| 8 |
|
vmacl |
|
| 9 |
7 8
|
syl |
|
| 10 |
9 7
|
nndivred |
|
| 11 |
|
fzfid |
|
| 12 |
|
elfznn |
|
| 13 |
12
|
adantl |
|
| 14 |
|
vmacl |
|
| 15 |
13 14
|
syl |
|
| 16 |
15 13
|
nndivred |
|
| 17 |
11 16
|
fsumrecl |
|
| 18 |
10 17
|
remulcld |
|
| 19 |
5 18
|
fsumrecl |
|
| 20 |
|
elioore |
|
| 21 |
20
|
adantl |
|
| 22 |
|
eliooord |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
simpld |
|
| 25 |
21 24
|
rplogcld |
|
| 26 |
19 25
|
rerpdivcld |
|
| 27 |
|
1rp |
|
| 28 |
27
|
a1i |
|
| 29 |
|
1red |
|
| 30 |
29 21 24
|
ltled |
|
| 31 |
21 28 30
|
rpgecld |
|
| 32 |
31
|
relogcld |
|
| 33 |
32
|
rehalfcld |
|
| 34 |
26 33
|
resubcld |
|
| 35 |
34
|
recnd |
|
| 36 |
31
|
adantr |
|
| 37 |
7
|
nnrpd |
|
| 38 |
36 37
|
rpdivcld |
|
| 39 |
38
|
relogcld |
|
| 40 |
10 39
|
remulcld |
|
| 41 |
5 40
|
fsumrecl |
|
| 42 |
41 25
|
rerpdivcld |
|
| 43 |
42 33
|
resubcld |
|
| 44 |
43
|
recnd |
|
| 45 |
19
|
recnd |
|
| 46 |
41
|
recnd |
|
| 47 |
32
|
recnd |
|
| 48 |
25
|
rpne0d |
|
| 49 |
45 46 47 48
|
divsubdird |
|
| 50 |
10
|
recnd |
|
| 51 |
17
|
recnd |
|
| 52 |
39
|
recnd |
|
| 53 |
50 51 52
|
subdid |
|
| 54 |
53
|
sumeq2dv |
|
| 55 |
18
|
recnd |
|
| 56 |
40
|
recnd |
|
| 57 |
5 55 56
|
fsumsub |
|
| 58 |
54 57
|
eqtrd |
|
| 59 |
58
|
oveq1d |
|
| 60 |
26
|
recnd |
|
| 61 |
42
|
recnd |
|
| 62 |
33
|
recnd |
|
| 63 |
60 61 62
|
nnncan2d |
|
| 64 |
49 59 63
|
3eqtr4d |
|
| 65 |
64
|
mpteq2dva |
|
| 66 |
|
1red |
|
| 67 |
5 10
|
fsumrecl |
|
| 68 |
67 25
|
rerpdivcld |
|
| 69 |
1
|
rpred |
|
| 70 |
69
|
adantr |
|
| 71 |
|
ioossre |
|
| 72 |
|
1cnd |
|
| 73 |
|
o1const |
|
| 74 |
71 72 73
|
sylancr |
|
| 75 |
68
|
recnd |
|
| 76 |
|
1cnd |
|
| 77 |
67
|
recnd |
|
| 78 |
77 47 47 48
|
divsubdird |
|
| 79 |
77 47
|
subcld |
|
| 80 |
79 47 48
|
divrecd |
|
| 81 |
47 48
|
dividd |
|
| 82 |
81
|
oveq2d |
|
| 83 |
78 80 82
|
3eqtr3d |
|
| 84 |
83
|
mpteq2dva |
|
| 85 |
67 32
|
resubcld |
|
| 86 |
29 25
|
rerpdivcld |
|
| 87 |
31
|
ex |
|
| 88 |
87
|
ssrdv |
|
| 89 |
|
vmadivsum |
|
| 90 |
89
|
a1i |
|
| 91 |
88 90
|
o1res2 |
|
| 92 |
|
divlogrlim |
|
| 93 |
|
rlimo1 |
|
| 94 |
92 93
|
mp1i |
|
| 95 |
85 86 91 94
|
o1mul2 |
|
| 96 |
84 95
|
eqeltrrd |
|
| 97 |
75 76 96
|
o1dif |
|
| 98 |
74 97
|
mpbird |
|
| 99 |
69
|
recnd |
|
| 100 |
|
o1const |
|
| 101 |
71 99 100
|
sylancr |
|
| 102 |
68 70 98 101
|
o1mul2 |
|
| 103 |
68 70
|
remulcld |
|
| 104 |
17 39
|
resubcld |
|
| 105 |
10 104
|
remulcld |
|
| 106 |
5 105
|
fsumrecl |
|
| 107 |
106
|
recnd |
|
| 108 |
107 47 48
|
divcld |
|
| 109 |
107
|
abscld |
|
| 110 |
67 70
|
remulcld |
|
| 111 |
105
|
recnd |
|
| 112 |
111
|
abscld |
|
| 113 |
5 112
|
fsumrecl |
|
| 114 |
5 111
|
fsumabs |
|
| 115 |
70
|
adantr |
|
| 116 |
10 115
|
remulcld |
|
| 117 |
104
|
recnd |
|
| 118 |
50 117
|
absmuld |
|
| 119 |
|
vmage0 |
|
| 120 |
7 119
|
syl |
|
| 121 |
9 37 120
|
divge0d |
|
| 122 |
10 121
|
absidd |
|
| 123 |
122
|
oveq1d |
|
| 124 |
118 123
|
eqtrd |
|
| 125 |
117
|
abscld |
|
| 126 |
|
fveq2 |
|
| 127 |
|
id |
|
| 128 |
126 127
|
oveq12d |
|
| 129 |
128
|
cbvsumv |
|
| 130 |
|
fveq2 |
|
| 131 |
130
|
oveq2d |
|
| 132 |
131
|
sumeq1d |
|
| 133 |
129 132
|
eqtrid |
|
| 134 |
|
fveq2 |
|
| 135 |
133 134
|
oveq12d |
|
| 136 |
135
|
fveq2d |
|
| 137 |
136
|
breq1d |
|
| 138 |
2
|
ad2antrr |
|
| 139 |
38
|
rpred |
|
| 140 |
7
|
nncnd |
|
| 141 |
140
|
mullidd |
|
| 142 |
|
fznnfl |
|
| 143 |
21 142
|
syl |
|
| 144 |
143
|
simplbda |
|
| 145 |
141 144
|
eqbrtrd |
|
| 146 |
|
1red |
|
| 147 |
21
|
adantr |
|
| 148 |
146 147 37
|
lemuldivd |
|
| 149 |
145 148
|
mpbid |
|
| 150 |
|
1re |
|
| 151 |
|
elicopnf |
|
| 152 |
150 151
|
ax-mp |
|
| 153 |
139 149 152
|
sylanbrc |
|
| 154 |
137 138 153
|
rspcdva |
|
| 155 |
125 115 10 121 154
|
lemul2ad |
|
| 156 |
124 155
|
eqbrtrd |
|
| 157 |
5 112 116 156
|
fsumle |
|
| 158 |
99
|
adantr |
|
| 159 |
5 158 50
|
fsummulc1 |
|
| 160 |
157 159
|
breqtrrd |
|
| 161 |
109 113 110 114 160
|
letrd |
|
| 162 |
109 110 25 161
|
lediv1dd |
|
| 163 |
107 47 48
|
absdivd |
|
| 164 |
25
|
rpge0d |
|
| 165 |
32 164
|
absidd |
|
| 166 |
165
|
oveq2d |
|
| 167 |
163 166
|
eqtrd |
|
| 168 |
5 10 121
|
fsumge0 |
|
| 169 |
67 25 168
|
divge0d |
|
| 170 |
1
|
adantr |
|
| 171 |
170
|
rpge0d |
|
| 172 |
68 70 169 171
|
mulge0d |
|
| 173 |
103 172
|
absidd |
|
| 174 |
77 158 47 48
|
div23d |
|
| 175 |
173 174
|
eqtr4d |
|
| 176 |
162 167 175
|
3brtr4d |
|
| 177 |
176
|
adantrr |
|
| 178 |
66 102 103 108 177
|
o1le |
|
| 179 |
65 178
|
eqeltrrd |
|
| 180 |
35 44 179
|
o1dif |
|
| 181 |
4 180
|
mpbird |
|