Metamath Proof Explorer


Theorem 2wlkd

Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018) (Revised by AV, 23-Jan-2021) (Proof shortened by AV, 14-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
2wlkd.v V = Vtx G
2wlkd.i I = iEdg G
Assertion 2wlkd φ F Walks G P

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 2wlkd.v V = Vtx G
7 2wlkd.i I = iEdg G
8 s3cli ⟨“ ABC ”⟩ Word V
9 1 8 eqeltri P Word V
10 9 a1i φ P Word V
11 s2cli ⟨“ JK ”⟩ Word V
12 2 11 eqeltri F Word V
13 12 a1i φ F Word V
14 1 2 2wlkdlem1 P = F + 1
15 14 a1i φ P = F + 1
16 1 2 3 4 5 2wlkdlem10 φ k 0 ..^ F P k P k + 1 I F k
17 1 2 3 4 2wlkdlem5 φ k 0 ..^ F P k P k + 1
18 6 1vgrex A V G V
19 18 3ad2ant1 A V B V C V G V
20 3 19 syl φ G V
21 1 2 3 2wlkdlem4 φ k 0 F P k V
22 10 13 15 16 17 20 6 7 21 wlkd φ F Walks G P