Metamath Proof Explorer


Theorem 2wlkd

Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018) (Revised by AV, 23-Jan-2021) (Proof shortened by AV, 14-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
2wlkd.v V=VtxG
2wlkd.i I=iEdgG
Assertion 2wlkd φFWalksGP

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 2wlkd.v V=VtxG
7 2wlkd.i I=iEdgG
8 s3cli ⟨“ABC”⟩WordV
9 1 8 eqeltri PWordV
10 9 a1i φPWordV
11 s2cli ⟨“JK”⟩WordV
12 2 11 eqeltri FWordV
13 12 a1i φFWordV
14 1 2 2wlkdlem1 P=F+1
15 14 a1i φP=F+1
16 1 2 3 4 5 2wlkdlem10 φk0..^FPkPk+1IFk
17 1 2 3 4 2wlkdlem5 φk0..^FPkPk+1
18 6 1vgrex AVGV
19 18 3ad2ant1 AVBVCVGV
20 3 19 syl φGV
21 1 2 3 2wlkdlem4 φk0FPkV
22 10 13 15 16 17 20 6 7 21 wlkd φFWalksGP