Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018) (Revised by AV, 23-Jan-2021) (Proof shortened by AV, 14-Feb-2021) (Revised by AV, 24-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2wlkd.p | |
|
2wlkd.f | |
||
2wlkd.s | |
||
2wlkd.n | |
||
2wlkd.e | |
||
2wlkd.v | |
||
2wlkd.i | |
||
Assertion | 2wlkd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | |
|
2 | 2wlkd.f | |
|
3 | 2wlkd.s | |
|
4 | 2wlkd.n | |
|
5 | 2wlkd.e | |
|
6 | 2wlkd.v | |
|
7 | 2wlkd.i | |
|
8 | s3cli | |
|
9 | 1 8 | eqeltri | |
10 | 9 | a1i | |
11 | s2cli | |
|
12 | 2 11 | eqeltri | |
13 | 12 | a1i | |
14 | 1 2 | 2wlkdlem1 | |
15 | 14 | a1i | |
16 | 1 2 3 4 5 | 2wlkdlem10 | |
17 | 1 2 3 4 | 2wlkdlem5 | |
18 | 6 | 1vgrex | |
19 | 18 | 3ad2ant1 | |
20 | 3 19 | syl | |
21 | 1 2 3 | 2wlkdlem4 | |
22 | 10 13 15 16 17 20 6 7 21 | wlkd | |