Metamath Proof Explorer


Theorem 2wlkdlem1

Description: Lemma 1 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
Assertion 2wlkdlem1 P = F + 1

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 1 fveq2i P = ⟨“ ABC ”⟩
4 s3len ⟨“ ABC ”⟩ = 3
5 df-3 3 = 2 + 1
6 4 5 eqtri ⟨“ ABC ”⟩ = 2 + 1
7 2 fveq2i F = ⟨“ JK ”⟩
8 s2len ⟨“ JK ”⟩ = 2
9 7 8 eqtr2i 2 = F
10 9 oveq1i 2 + 1 = F + 1
11 6 10 eqtri ⟨“ ABC ”⟩ = F + 1
12 3 11 eqtri P = F + 1