Metamath Proof Explorer


Theorem 2wlkdlem2

Description: Lemma 2 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
Assertion 2wlkdlem2 0 ..^ F = 0 1

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2 fveq2i F = ⟨“ JK ”⟩
4 s2len ⟨“ JK ”⟩ = 2
5 3 4 eqtri F = 2
6 5 oveq2i 0 ..^ F = 0 ..^ 2
7 fzo0to2pr 0 ..^ 2 = 0 1
8 6 7 eqtri 0 ..^ F = 0 1